2
=

' /7 “ NORDUGRID

NORDUGRID-TECH-14
12/9/2007

THE ARC COMPUTATIONAL JOB MANAGEMENT COMPONENT - A-REX

Description and Administrator’s Manual

A .Konstantinov*

*aleks @fys.uio.no

Contents

1 Introduction

2 Main concepts

3 Input/output data

4 Job flow

5 URLs

6 Internals

6.1 Internal Files of the Grid Manager
6.2 GridFTPInterface L
6.3 Web Service Interface L
6.3.1 Basic Execution Service Interface Lo oL oo
6.3.2 Extensions to OGSA BESinterface,
6.3.3 Delegation Interface L
6.3.4 Local Information Description Interface,
6.3.5 Supported JSDL elements L
6.3.6 ARC-specific JISDL Extensions
7 Cache
7.1 Structure e e e e e e e e
7.2 Howitworks e e

8 Files and directories

8.1

8.2

Modules

Directories

9 Configuration

9.1
9.2
9.3
9.4
9.5

Configuration of the Grid Manager e

Configuration of the GridFTP Server

Authorization
LRMS support . . .

Runtime environment

10 Installation

10.1 Requirements

10
10
10
12
12
13

13
14
14

15
15
16

17
17
22
25
25
25

29

10.2 Setup of the Grid Manager e e 29

10.3 Setup of the GridFTP Server 29
10.4 Usage o e e e 29
10.5 Running as non-rooto e e e e e e e 29

1 Introduction

A-Rex is one of ARC middleware componets implementing functions of so called Computing Element (CE). It’s
made of few components - A-Rex Web Service (WS) Interface and Grid Manager (GM). Alternative and currently
only stable interface to A-Rex is GridFTP Server (GFS).

The aim of the Grid Manager (GM) is to take care of job pre- and post-processing. It provides functionality to stage-in
files containing input data and program modules from wide range of sources and transfer or store output results.

Both WS Interface and GridFTP Interface components provide a way to submit and control computational tasks (jobs)
to be executed by the GM and undelying Local Resource Management System. While WS interface is currently being
developed the GridFTP is considered to be stable and prefered one.

You should use this document for advanced configuration purposes and understanding of internals of the
aforementioned tools. For general instalaltion and configuration refer to other documents avaialble at http:

//www.nordugrid.org/papers.html.

2 Main concepts

A job is a set of input files (which may or may not include executables), a main executable and a set of output files.

The process of gathering input files, executing a job, and transferring/storing output files is called a session.

Each job gets a directory on the CE called the session directory (SD). Input files are gathered in the SD. The job is
supposed to produce new data files in the SD as well. GM does not guarantee the availability of any other places
accessible by the job other than SD (unless such a place is part of a requested Runtime Environement). The SD is also
the only place which is controlled by the GM. It is is accessible by the user from outside through HTTPS and GridFTP
protocols. Any file created outside the SD is not controlled by the GM. Any exchange of data between client and
GM (including also program modules) is done through GridFTP [1]] or HTTPS protocols depending on the selected
interface. A URL for accessing input/output files is obtained through the Information System or the WS Information
Interface of A-Rex.

Each job gets an identifier (jobid). This is a handle which identifies the job in the GM and the Information System [2].

Jobs are initiated and controlled through GFS or WS. Complete job descriptions (JD) are passed to the GM either
through GFS in RSL [3] or through WS in JSDL [4] coded description . Input data files and job executables are
transferred separately through the same interface, as described in the next section.

3 Input/output data

The main task of the GM is to take care of processing input and output data (files) of the job. Input files are gathered
in the SD. There are two ways to put a file into the SD:

* Download is initiated by the GM — This is the case for files defined in the JD (with name and source). The GM
alone is responsible to make sure that all required files will be available in the SD.
The supported protocols for sources at the moment are: GridFTP, FTP, HTTP, HTTPS (HTTP over SSLv3) and
HTTPg (HTTP over GSI). Also some nonstandard sources are supported. Those are described below.

* Upload is initiated by the user directly or through the User Interface (UI). Because the SD becomes available

immediately at the time of submission of JD, Ul can (and should) use that to upload data files which are not

http://www.nordugrid.org/papers.html
http://www.nordugrid.org/papers.html

otherwise accessible by the GM. Examples of such files are the main executable of the job, the job’s input files,

etc. These files can (and should) also be specified in the JD.

There is no other reliable way for a job to obtain input data on the CE belonging to NorduGrid. Access to AFS, NFS,
FTP, HTTP and any other remote data transport during execution of a job is not guaranteed (at least not by GM).

Jobs should store output files in thir SD. Like input files, output files belong into two groups:

* Files which are supposed to be moved to a Storage Element (SE) and optionally registered in some Indexing
Service like the Globus Replica Location Service (RLS) — The GM takes care of these files. They have to be
specified in the JD. If the job fails during any stage of processing, no attept is made to transfer those files to their

final destination, unless the option preserve=yes is specified in their URLs.

* Files which are supposed to be fetched by the user — The user has to use a tool like the UI to obtain these files.
They must also be specified in the JD.

4 Job flow

From the point of view of the GM a job passes through various states. Picture 1 presents a diagram of the possible

states of a job. A user can examine the state of a job by querying the NorduGrid Information System (IS) using

Failure or cancel request

ACCEPTED
—r—‘—' PENDI NG
PREPARI NG |-Failure or cancel requesy
PENDI NG

SUBM TTI NG Fai lure or cancel request

l

INLRMS —> CANCELI NG [—*

——=
PENDI NG
S

Fai | ure processing

FI NI SHI NG

l

— FI NI SHED

l

DELETED

Rerun request

Figure 1: Job states

the UI or any other suitable tool. Please remember that the IS can manipulate state names to make them more user
friendly and to combine them with states introduced by other parts of the whole setup. Another way is to access virtual

informational files through GridFTP interface or to use query method of WS interface.

Configuration can put limits on the amout of simultaneous jobs in some states. If such a limit is reached, a job ready
to enter into the state in question will stay in it’s current state waiting for a free slot. This situation is presented by
prepending the prefix PENDING: to the current state name in the job’s status mark.

Below is the description of all actions taken by the GM at every state:

* Accepted - In this state the job has been submitted to a CE but is not processed yet. The GM will analyze the
JD and move to the next stage. If the JD can not be processed the job will be canceled and moved to the state
Finishing.

Preparing - The input data is being gathered in the SD (stage-in). The GM is downloading the files specified in
the JD and is waiting for files which are supposed to be uploaded by the UL If all files are successfully gathered
the job moves to the next state. If any file can’t be downloaded or it takes the UI too long to upload a file, the
job moves to Finishing state. It is possible to put a limit on the number of simultaneous Preparing jobs. If this
limit is exceeded, jobs ready to enter the Preparing state will stay in the Accepted state, but prefixed with the
PENDING: mark. Exceptions are jobs which have no files to be downloaded. These are processed out of limits.

Submitting - The job is being passed for execution to the Local Resource Management System (LRMS). At the
moment PBS is supported best but correspoding backends for many other LRMSs are provided with the default
installation. If the local job submission is successful the job moves to the INLRMS state. Otherwise it moves

to Finishing. It is possible to limit the agregate number of jobs in Submitting and InNLRMS states.

e InLRMS - The job is queued or being executed in the LRMS. The GM takes no actions except waiting until the
job finishes.

Cancelling - Necessary action to cancel the job in the LRMS is being taken.

Finishing - The output data is being processed (stage-out). Specified data files are moved to the specified SEs
and are optionally registered at an Indexing Service. The user can download data files from the SD by using the
UI or other adequate tool. All the files not specified as output files are removed from the SD at very beginning

of this state. It is possible to limit number of simultaneous jobs in this state.

L]

Finished - No more processing is performed by the GM. The user can continue to download data files from
the SD. The SD is kept available for some time (default is 1 week). After that the job is moved to the
state Deleted. The ’deletion’ time can be obtained by querying the NorduGrid Information System attribute
nordugrid-pbs-job-sessiondirerasetime of a nordugrid-pbs-job entry. If a job was moved to Fin-
ished because of failure, it may be restarted on request of a client. When restarted, a job is moved to the state
previous to the one in which it failed and is assigned mark PENDING. This is needed in order to not break the
configuration limits. Exception is a job failed in INLRMS state and lacking input files specified in JD. Such a
job is treated like failed in Preparing state.

Deleted - The job is moved to this state if the user have not requested job to be cleaned before the SD’s lifetime

expires. Only minimal subset of information about such job is kept. The SD is not available anymore.

In case of a failure special processing is applied to output files. All specified output files are treated as downloadable

by the user. No files will be moved to their destination SE.

S URLs

The GM and it’s components support the following data transfer protocols and corresponding URLs: fip, gsifip, http,
httpg, hitps, se, rc and rls. For more information please see “Protocols, Uniform Resource Locators (URL) and
extensions supported in ARC” document [3].

6 Internals

6.1 Internal Files of the Grid Manager

For each local UNIX user listed in the GM configuration a control directory exists. In this directory the GM stores
information about jobs belonging to that user. Multiple users can share the same control directory. To make it easier
to recover in case of failure, the GM stores most information in files rather than in memory. All files belonging to

same the job have names starting with job.ID., where ID is the job identifier.

The files in the control directory and their formats are described below:

e job.ID.status - current state of the job. This is a plain text file containing a single word representing the current

state of the job. Possible values are :

ACCEPTED

PREPARING

SUBMITTING

INLRMS

FINISHING

FINISHED
CANCELING

DELETED

See section 4 for a description of the various states. Additionally each value can be prepended the prefix “PENDING:”
(like PENDING:ACCEPTED, see section 4). This is used to show that a job is ready to be moved to the next state but
it has to stay in it’s current state only because otherwise some limits set in the configuration would be exceeded.

e job.ID.description - contains the RSL description of the job.

e job.ID.local - information about the job used by the GM. It consists of lines of format “name = value” . Not all
of them are always available. The following names are defined:

subject - user certificate’s subject, also known as the distinguished name (DN)
— starttime - GMT time when the job was accepted represented in the Generalized Time format of LDAP
— lifetime - time period to preserve the SD after the job has finished in seconds

— cleanuptime - GMT time when the job should be removed from the cluster and it’s SD deleted in General-

ized Time format
— notify - email addresses and flags to send mail to about the job specified status changes
— processtime - GMT time when to start processing the job in Generalized Time format
— exectime - GMT time when to start job execution in Generalized Time format
— expiretime - GMT time when the credentials delegated to the job expire in Generalized Time format
— rerun - number of retries left to rerun the job
— jobname - name of the job as supplied by the user

— [rms - name of the LRMS backend to be used for local submission

— queue - name of the queue to run the job at

— localid - job id in LRMS (appears only after the job has reached state INLRMS)
— args - executable name followed by a list of command-line arguments

— downloads - number of files to download into the SD before execution

— uploads - number of files to upload from the SD after execution

— gmlog - directory name which holds files containing information about the job when accessed through
GridFTP interface

— clientname - name (as provided by the user interface) and ip address:port of the submitting client machine
— clientsoftware - version of software used to submit the job

— sessiondir - the job’s SD

— failedstate - state in which job failed (available only if it is possible to restart the job)

— jobreport - URL of a user requested logger service. The GM will also send job records to this service in

addition to the default logger service configured in the configuration

This file is filled partially during job submission and fully when the job moves from the Accepted to the Preparing
state.

e job.ID.input - list of input files. Each line contains 2 values separated by a space. First value contains name of
the file relative to the SD. Second value is an URL or a file description. Example:

input.dat gsiftp://grid.domain.org/dir/input_12378.dat

url - ordinary URL for gsiftp, ftp, http, https or httpg protocols with the addition of ’replica catalog url’ (RC
URL) and ’replica location service url’ (RLS URL).

Each URL can contain additional options.
file description - [size][.checksum].
size - size of the file in bytes.
checksum - checksum of the file identical to the one produced by cksum (1).

Both size and checksum can be left out. Special kind of file description *.* is used to specify files which are not
required to exist.

This file is used by the "downloader’ utility. Files with "url’ will be downloaded to the SD and files with ’file descrip-
tion’ will simply be checked to exist. Each time a new valid file appears in the SD it is removed from the list and

Jjob.ID.input is updated. Any external tool can thus track the process of collecting input files by checking job.ID.input.

* job.ID.output - list of output files. Each line contains 1 or 2 values separated by a space. First value is the name
of the file relative to the SD. The second value, if present, is a URL. Supported URLs are the same as those
supported by job.ID.input.

This file is used by the "uploader’ utility. Files with url will be uploaded to SE and remaining files will be left in the
SD. Each time a file is uploaded it is removed from the list and job.ID.output is updated. Files not mentioned as output

files are removed from the SD at the the beginning of the Finishing state.

e job.ID failed - the existence of this file marks the failure of the job. It can also contain one or more lines of text

describing the reason of failure. Failure includes the return code different from zero of the job itself.

e job.ID.errors - this file contains the output produced by external utilities like downloader, uploader, script for
job submission to LRMS, etc on their stderr handle. Those are not necessarily errors, but can be just useful
information about actions taken during the job processing. In case of problem include content of that file while
asking for help.

e job.ID.diag - information about resources used during execution of job and other information suitable for diag-
nostics and statistics. It’s format is similar to that of job.ID.local. The following names are at least defined:

— nodename - name of computing node which was used to execute job,

— runtimeenvironments - used runtime environments separated by ’;’,

— exitcode - numerical exit code of job,

— frontend_distribution - name and version of operating system distribution on frontend computer,
— frontend_system - name of operating on frontend computer,

— frontend_subject - subject (DN) of certificate representing frontend computer,

— frontend_ca - subject (DN) of issuer of certificate representing frontend computer,

and other information provided by GNU fime utility. Note that some implementation of time insert unrequested

information in their output. Hence some lines can have broken format.
* job.ID.proxy -delegated GSI proxy.

e job.ID.proxy.tmp - temporary GSI proxy with different unx ownership used by processes run with effective user

id different form job owner’s id.

There are other files with names like job.ID.* which are created and used by different parts of the GM. Their presence

in the control directory can not be guaranteed and can change depending on changes in the GM code.

6.2 GridFTP Interface

The GridFTP Interface to job management is implemented through GridFTP server. The GFS is made of layer imple-
menting GridFTP protocol and plugins for accessing actual data. Local file access in the GFS is implemented through
plugins (shared libraries). There are 3 plugins provided with the GFS: fileplugin.so, gaclplugin.so and jobplugin.so .

The fileplugin.so is intended to be uses for plain file access with the configuration senitive to user subject and is not

needed for job management interface.

The gaclplugin.so uses GACL (http://www.gridpp.ac.uk/authz/gacl/) to control access to local file system

instead of Unix user identity. It’s also not needed for job management.

The jobplugin.so is using information about jobs being controlled by GM and provides access to session directories of
the jobs owned by user. It also provides an interface (virtual directory and virtual operations) to submit, cancel, clean,
renew credentials and obtain information about the job.

6.3 Web Service Interface

A-REX Web Service Interface provides means to submit a description of a computational job to a computing resource,
to stage-in additional data, to monitor and control processing of jobs, and obtain data produced during the execution
of a job. The WS Interface is built and deployed inside Hosting Envirnoment Daemon [HED] infrastructure[6].

http://www.gridpp.ac.uk/authz/gacl/

6.3.1 Basic Execution Service Interface

The job submission and control interface is based on document produced by the OGF OGSA Basic Execution Services
(BES) Working Group[7]. The exchange of SOAP messages is performed over the HTTPS protocol. The BES
interface is represented by two port-types - BES-Management and BES-Factory. The former is made to control the A-
REX service itself and thus defines operations to start and stop the functionality of the BES service. A-REX does not
implement remote control of service functionality. Hence the BES-Management port-type is not implemented. The
BES-Factory port-type provides operations to submit new jobs (to create an activity in terms of BES) and to monitor
its state. It also has an ability to provide information about the service. A-REX fully implements the functionality of
this port-type.

For job descriptions A-REX accepts the Job Submission Description Language (JSDL)[4] as defined by the OGF Job

Submission Description Language Working Group. Supported elements and extensions are described below.

6.3.2 Extensions to OGSA BES interface

A-REX introduces a new operation in addition to those provided by BES. It does that by defining its own port-type
A-REX with the single operation ChangeActivityStatus (see Appendix D). This operation provides a way to request

simple transfers between states of jobs being processed and corresponding actions.

* ChangeActivityStatus

— Input

w ActivityStatusType OldStatus: Description of the state the job is supposed to be in during execution of
this request. If the current state of the job is different from the one having been given, the operation

is aborted and a fault is returned. This parameter is optional.
x ActivityStatusType NewStatus: Description of the state the job is to be put into.
— Output
x ActivityStatusType NewStatus: Description of the current state of the job.
— Fault(s)
NotAuthorizedFault: Indicates that the client is not allowed to do this operation.

« InvalidActivityldentifierFault: There is no such job/activity.

x CantApplyOperationToCurrentStateFault: The requested transition is not possible.

On result of this command, the job should be put into the requested state. If such a procedure cannot be performed
immediately then the corresponding sequence is initiated and fault OperationWillBeAppliedEventuallyFault will be

returned.

Since BES allows implementators to extend their initial activity states with additional sub-states, A-REX defines a set
of sub-states of activity processing in addition to those defined by the BES, as listed in Table 1.

6.3.3 Delegation Interface

ARC service interfaces optionally offer a sub-interface, called the Delegation Interface (see Appendix E). This is a
common purpose interface to be used by ARC services which accept delegated credentials from clients. The Dele-
gation Interface implements two operations: initiatialization of credentials delegation (DelegateCredentialsInit) and
update/renewal of credentials (UpdateCredentials).

10

Table 1: Job states definitions and mappings

Applicable BES State | ARC Sub-state Description
) Accepting Job is in the process of being submitted
Pending -
Accepted Job was submitted
Preparing Stage-in process is going on
Prepared Stage-in process has finished
Submitting Communication with local batch system is in process
Running Executing Job is being executed in local batch system
Killing Communication with local batch system to terminate execution is in
process
Executed Job execution in local batch system has finished
Finishing Stage-out process is going on
Cancelled Failed There was a failure during execution
Failed
All Pending Job is prevented from going to the next state due to some internal
limits; this sub-state appears in parallel with other sub-states
All Held Job processing is suspended on client request; this sub-state appears in
parallel with other sub-states

* DelegateCredentialsinit operation - this operation performs the first half of the credentials delegation sequence.

— Input

+* None. On this request the service generates a pair of public and private keys. The public key is then
sent to the client in response.

— Output(s)

x TokenRequestType TokenRequest: Contains the public key generated by the service as a Value element.
It also provides an identifier in the Id element which should be used to refer to the corresponding
private key.

— Fault(s)
« UnsupportedFault: Indicates that the service does not support this operation despite supporting the

port-type.

% ProcessingFault: Internal problems during generation of the token.

* UpdateCredentials operation - this operation makes it possible to update the content of delegated credentials

(like in the case of credentials being renewed) unrelated to other operations of the service.

— Input

% DelegatedTokenType DelegatedToken: Contains an X509 proxy certificate based on the public key
from the DelegateCredentialslnit signed by the user’s proxy certificate. Also includes the Id element
which identifies the private key stored at the service side associated with these credentials. The refer-
ence element refers to the object to which these credentials should be applied in a way specific to the
service. The same element must also be used for delegating credentials as part of other operations on

service.
— Output(s)

None.

11

— Fault(s)

x UnsupportedFault: Indicates that service does not support this operation despite supporting the port-
type.

% ProcessingFault: Internal problems during generation of the token.

Additionally, A-Rex Web Service Interface allows delegation to be performed as part of the CreateActivity operation
of the BES-Factory port-type. For this it accepts the element DelegatedCredentials inside the CreateActivity element.
The Id element of DelegatedCredentials must contain an identifier obtained in response to the previous DelegateCre-

dentialsInit operation.

6.3.4 Local Information Description Interface

The A-REX implements the Local Information Description Interface (LIDI) interface being common for all ARC
services. This interface is based on OASIS Web Services Resource Properties specification[8]. Information about
resources and maintained activities/jobs are represented in a WS-Resource Properties informational XML document.
The document type is defined in the A-Rex WSDL as a ResourcelnformationDocumentType. It contains the following

elements/resources:

BESFactory - collection of BES Factory attributes as defined in the BES specifications.

Glue2Resource - description of a computation resource that uses Glue2 schema. This one is going to be specified
after the Glue2 XML bindings will be available.

Activities - list of maintained activities. Each activity contains an identifier (Activityldentifier), BES (ActivityDocu-
ment) and Glue2 (Glue2Job) descriptions of the activity.

All information can be accessed either through requests on particular resources or through XPath queries using WS-

Resource Properties operations.

6.3.5 Supported JSDL elements

A-REX supports the following elements from the JSDL version 1.0 specification[4] including POSIX Applications

extension:

JobName - name of the job as assigned by the user.
Executable (POSIX) - name of the executable file.
Argument (POSIX) - arguments the executable will be launched with.

DataStaging

Filename - name of the data file on the executing node.
Source - source where the file will be taken from before execution.

Target - destination the file will be delivered to after execution.

Input (POSIX) - file to be used as standard input for the executable.

Output (POSIX) - file to be used as standard output for the executable.

12

Error (POSIX) - file to be used as standard error for the executable.
MemoryLimit (POSIX) - amount of physical memory needed for execution.
TotalPhysicalMemory - same as MemoryLimit.

IndividualPhysicalMemory - same as MemoryLimit.

CPUTimeLimit (POSIX) - maximal amount of CPU time needed for execution.
TotalCPUTime - same as CPUTimeLimit.

Individual CPUTime - same as CPUTimeLimit.

WallTimeLimit (POSIX) - amount of clock time needed for execution.

Total CPUCount - number of CPUs needed for execution.

Individual CPUCount - same as Total CPUCount.

6.3.6 ARC-specific JSDL Extensions
A-REX accepts JSDL documents having the following additional elements (see Appendix F):

IsExecutable - marks file to become executable after being delivered to the computing resource.
RunTimeEnvironment - specifies the name of the Runtime Environment needed for job execution.
Middleware - request for specific middleware on the computing resource frontend.
RemoteLogging - destination for the usage record report of the executed job.

LocalLogging - name for the virtual directory available through job interface and containing various debug informa-

tion about job execution.

AccessControl - ACL expression which describes the identities of those clients who are allowed to perform operations
on this job.

Notify - Email destination for notification of job state changes.

SessionLifeTime - duration for the directory containing job-related files to exist after the job finished executing.
JoinOutputs - specifies if standard output and standard error channels must be merged.

Reruns - defines how many times a job is allowed to rerun in case of failure.

CredentialServer - URL of MyProxy service which may be used for renewing the expired delegated job credentials.

CandidateTarget - specifies host name and queue of a computing resource.

7 Cache

The GM can cache input files. Caching is enabled if corresponding command is present in configuration file. The
GM does not cache files marked as executable in job. Caching can also be explicitly turned off by user for each
file by using cache=no option in URL (for URL options read “Protocols, Uniform Resource Locators (URL) and
extensions supported in ARC” [3]]). The disc space occupied by cache is controlled by removing unused files. For
more information look in section 9.1.

13

7.1 Structure

Cache directory contains plain files. Those are

list - stores names of the files (8 digit numbers) and corresponding URLs delimited by blank space. Each pair is

delimited by some amount of \0 codes. Also creation and expiration times are stored if available

old - stores URLs which have been removed from cache. Records are delimited by some amount of \O codes

and are meant to be removed by some external routine.

* new - stores URLs which have been added to cache. Records are delimited by some amount of \O codes and
are removed when corresponding files are removed from cache. They can also be handled by some external
routines. Every time record is added to o/d it is removed from new.

statistics - consists of strings containing name=value pairs. Following names are defined:

hardsize -size of file system for storing cached data

hardfree - amount of disc space available on that file system

softsize - if cache exceeds this size files are started being removed

softfree - space left till softsize (can be negative)

claimed - space used by files claimed by running jobs

unclaimed - space used by files not being currently used by any job

#Hit#####. info - stores state of file (######## stands for 8 digits). State is represented by one character:

¢ - just created, content is empty.

f - failed to download (treated same as ’c’).

r - ready to be used, content is valid.

d - being downloaded. ’d’ is followed by identifier of application/job downloading that file. During content’s

download this file has write lock set.

########. claim - stores list of identifiers of applications/jobs using this file. Identifiers are stored one per line.

#H###### - files storing content of corresponding URL. These can be stored in separate directory.

Files list, old , new and ########.info has to be stored on filesystem which has support for files’ locking.

7.2 How it works

If a job requests an input file which is subject for cacheing, it is stored in the cache directory instead of the SD. The
file is made available to the job by either soft-linking it in the SD or copying it to the SD. The latter option is more

secure and hence advised.

Before downloading a file the GM tries to determine it’s size and then tries to preallocate space in the cache directory
by writing a file of the same size. If this fails (possibly because the file system has no more space), it tries to the
remove oldest cached files which are not being used by any job. This means that the hard limit of cache size is the
space available in the file-system. In case cache gets full and it is impossible to free enough space, the download

fails and then is retried without using cache.

Before giving access to an already cached file, the GM contacts the original file source to check if the user has suficient

access rights to the file. Not all protocols make this check possible.

14

Also, file creation or validity times are checked to make sure the cached file is fresh . If it is impossible to obtain

creation and invalidation times , the file is invalidated 24 hours after it was downloaded.

The GM checks the cache periodically. If the space used by cache exceeds the high water-mark given in the configu-
ration file (softsize), it tries to remove the oldest unused files until cache size drops below the low water-mark. This

sets the soft limit of cache size.

There are two kinds of caches supported. Files in private cache are owned by the Unix user to which a grid user is
mapped. Those files are readable only by that particular Unix user. Another kind of cache is shared. Files in the

shared cache are owned by the Unix user who started GM and are readable by everyone.

8 Files and directories

8.1 Modules

The GM consists of several separate executable modules. These are:

 grid-manager - The main module. It is responsible for processing jobs, moving them through states and running

other modules.

e downloader - This is a module responsible for gathering input files in the SD. It processes the job.ID.input file
and updates it.

* uploader - This module is responsible for delivering output files to the specified SEs and registration at an

Indexding Service (like RLS) as needed. It processes and updates the job.ID.output file.

* cache-register - Utility to register cached data into an Indexing Service . It reads and modifies cache informa-
tional files old and new (as described in section 7). Configuration is read directly from the GM’s configuration
file (see section 9.1). It is run by the GM every 5 minutes.

e frontend-info-collector - Utility to gather information about the frontend . It puts collected information into the
Jjob.ID.diag file.

» gm-kick - Sends a signal to the GM though a FIFO file to wake it up. It’s used to increase responsiveness of GM.
The following modules are always run under the Unix account to which a grid user is mapped.

o smtp-send.sh and smtp-send - These are the modules responsible for sending e-mail notifications to the user.

The format of the mail messages can be easily changed by editing the simple shell script smtp-send.sh.

* submit-*-job - Here * stands for the name of the LRMS. Curently supported LRMS are PBS/Torque, Condor and
SGE. Also fork pseudo-LRMS is supported for testing purposes. This module is responsible for job submission
to the LRMS.

e cancel-*-job - This script is for canceling jobs which have been already submitted to the LRMS.

* scan-*-job -This shell script is responsible for notifying the GM about completion of jobs. It’s implementation
for PBS uses server logs to extract information about jobs. If logs are not available it uses the less reliable gstat
command for that. Other backends use different techniques.

In addition, there is also an administration utility:

15

* gm-jobs - prints a list of jobs available on the cluster and the number of jobs in each state.
gm-jobs [-h] [-1] [-u uid] [-U name]
-1 — print more information about each job,
-u — pretend utility is run by user with id uid,

-U — pretend utility is run by user with name name.

GM comes with plugins useable for various authorization purposes (see for example the description of authplugin

command below):

e inputcheck - checks if all input files specified in job description are downloadable.
inputcheck [-h] [-d debug_level] RSL_fle [proxy_file]
- RSL_file — file with job description,
- proxy_file — credentials proxy.

e [cas - executes LCAS plugins on credentials and returns O if authorization passed.
Icas credentials description [library [db [directory]]]
- credentials — path to file with credentials to authorize,
- description — path to file with job description,
- library — path to LCAS library (full or relative to LCAS directory),
- db — path to LCAS DB file (full or relative to LCAS directory),
- directory — LCAS directory.

8.2 Directories

The GM is installed into a single installation point referred as SNORDUGRID_LOCATION and the following sub-

directories are used:

$NORDUGRID_LOCATION/bin — tools

$NORDUGRID_LOCATION/libexec — program modules used by GM
$NORDUGRID_LOCATION/etc — configuration files, deprecated, central configuration file is used by
default

$NORDUGRID_LOCATION/sbin — daecmons

$NORDUGRID_LOCATION/Ilib — gridftp server’s plugins and API libraries

The GM also uses following directories:

e session root directory - Tthis is the directory under which a user’s SDs are created. It’s location is configurable
per UNIX user. Several (or even all) users may share the same session root directory. .
There are 2 processes which need to have permissions to create new files and directories in it : GM and GFS.
If any of these processes are run under a dedicated user account, that account needs full permissions in the
session root directory.
If these processes are run under the root account, make sure session root directory resides on a filesystem which
does not limit the capabilities of the root user (as does for example NFS with root_squash option).
If there is a need to run processes under the root account (to be able to run jobs in LRMS under different users’
accounts, for example) but there is no way to provide a suitable session root directory, use the norootpower
command in GM’s configuration file. In that case GM and GFS will use the identity of the local user to which a
Grid identity is mapped to access the session root directory. Hence those users will need full access there.

The GM creates SDs with proper ownership and permissions for the local identity used to run a job. Some

16

filesystems require users to have execute permission on the session root directory in order to access any file or
subdirectory there.

In order for jobs to access their input files, session root directories should be shared across cluster nodes.
Otherwise, LRMS-specific methods must be used to transfer files to execution nodes. For more information

see section 9.4.

e control directory - In this directory GM and GFS store an information about accepted jobs. Both processes must
have full permissions there.
A subdirectory called log is created there. It is used to accumulate information about started and finished jobs.
This information is periodically sent to the desired logger service(s). For each job start and stop event, and
for each logger service where that event must be sent, a separate file is written. Once an event is sent, the

corresponding file is deleted.

9 Configuration

9.1 Configuration of the Grid Manager

The GM configuration is done through a single configuration file. Historically GM supports 2 kinds of configuration

files. For old one (deprecated) it looks at following places:

e SNORDUGRID_LOCATION/etc/grid-manager.conf

e Jetc/grid-manager.conf
And for new one in
e Jetc/arc.conf

The old configuration file consists of empty lines, lines containing comment (line starts from #) or configuration

EXTE)

commands. Blank spaces in arguments must be escaped using ’\’ or arguments must be enclosed in ’"’. Command

line starts from command followed by arguments separated from command and between them by spaces.

The new configuration file can also contain empty lines and comments starting from #. It is separated into sections.

Each sections starts from string containing
e [section name/subsection name/subsubsection name].

Each section continues till next section of end of file. One configuration file can have commands for multiple ser-
vices/modules/programs. Each service get it’s own section named after it. The GM uses section [grid-manager].
Some services can make use of multiple subsections to reflect their internal modular structure. Commands in section

[common] apply to all services. Command lines have format
* name="arguments string”.

Names are same as in old configuration file. The argument string consists of same arguments as in old format. And

they must obey same rules.
Both files support almost same commands. Following commands are defined (examples are given for new format):

Global commads (those which affect global parameters of the GM and affect all serviced users, also described in [9]):

17

* daemon=yeslno - specifies whether the GM should go to background after started. Defaults to yes.

* logfile=[path] - specifies name of file for logging debug/informational output. Defaults to /dev/null for daemon
mode and stderr for foreground mode.

* user=[uid|:gid]] - specifies user id (and optionally group id) to which the GM must switch after reading con-
figuration. Defaults to not switch.

* pidfile=[path] - specifies file where id if GM process will be stored. Defaults to not write.

* debug=number - specifies level of debug information. More information is printed for higher levels. Currently

highest effective number is 3 and lowest 0. Defaults to 2.

All commands above are generic for every daemon-enabled server in ARC NorduGrid toolkit (like GFS and HTTPSD).

e joblog=[path] - specifies where to store log file containing information about started and finished jobs.

e jobreport=[URL ... number] - specifies that GM has to report information about jobs being processed (started,
finished) to centralized service running at given URL. Multiple entries and multiple URLs are allowed. number
specifies how long old records have to be kept if failed to be reported. That time is in days. Last specified value

becomes effective.

e securetransfer=yeslno - specifies whether to use encryption while transferring data. Currently works for
GridFTP only. Default is no. It is overridden by value specified in URL options.

* localtransfer=yesino - specifies whether to pass file downloading/uploading task to computing node. If set to
yes the GM won’t download/upload files. Instead it composes script submitted to LRMS in way to make it
do that. This requires installation of GM and Globus to be accessible from computing nodes and environment
variables GLOBUS_LOCATION and NORDUGRID_LOCATION to be set accordingly. Default is no.

* maxjobs=[max_processed_jobs [max_running_jobs]] - specifies maximum number of jobs being processed by
the GM at different stages:
max_processed_jobs - maximal amount of jobs being processed by GM. This does not limit amount of jobs,
which can be suNOTE:bmitted to cluster
max_running jobs - maximal amount of jobs passed to Local Resource Management System

Missing value or -1 means no limit.

* maxlod=[max_frontend_jobs [emergency_frontend_jobs [max_transferred_files]]] - specifies maximum load
caused by jobs being processed on frontend:
max_frontend_jobs - maximal amount of jobs heavily using resources of frontend (applied before moving job
to PREPARING and FINISHING states)
emergency_frontend_jobs - if limit of max_frontend_jobs is used only by PREPARING or by FINISHING jobs
aforementioned number of jobs can be moved to another state .This is used to avoid case then jobs can’t finish
due to big amount of recently submitted jobs.
max_transfered_files - maximal number of files being transfered in parallel by every job. Used to decrease load
on not so powerful frontends.

Missing value or -1 means no limit.

o wakeupperiod=time - specifies how often for external changes are performed (like new arrived job, job finished
in LRMS, etc.). time is a minimal time period specified in seconds. Default is 3 minutes.

18

* cacheregistration=yes\no - enables or disables registration of cache data into Indexing Services like RC or RLS.
The default is no. Only files dowmloaded through meta-url are registred. Registration is done to same service
used for obtaining information about file. For this opeartion credentials of the GM (host key and certificate) are
used. If required new files storage location is registered at Indexing Service with quasi-url cache://hostname/

and name hostname:cache .

authplugin=state options plugin - specifies plugin (external executable) to be run every time job is going to
switch to state. Following states are allowed: ACCEPTED, PREPARING, SUBMIT, FINISHING, FINISHED
and DELETED. If exit code is not O job is canceled by default. Options consist of name=value pairs separated
by a comma. Following names are supported:

timeout - specifies how long in seconds execution of the plugin allowed to last (mandatory, “timeout=* can be
skipped for backward compatibility).

onsuccess, onfailure and ontimeout - defines action taken in each case (onsuccess happens if exit code is 0).
Possible actions are:

pass - continue execution,

log - write information about result into logfile and continue execution,

fail - write information about result into logfile and cancel job.

localcred=timeout plugin - specifies plugin (external executable or function in shared library) to be run every
time job has to do something on behalf of local user. Execution of plugin may not last longer than timeout
seconds. If plugin looks like function@path then function int function(char*,char*,char¥®,...) from shared

library path is called (timeout is not functional in that case). If exit code is not 0 current operation will fail.

norootpower=yes/no - if set to yes all processes involved in job management will use local identity of a user to
which Grid identity is mapped in order to access filesystem at path specified in session command (see below).

Sometimes this may involve running temporary external process.

allowsubmit=[group ...] - list of authorization groups of users allowed to submit new jobs while "allownew=no"

is active in jobplugin.so configuration (see below in section 9.2). Multiple commands are allowed.

speedcontrol=min_speed min_time min_average_speed max_inactivity - specifies how long/slow data fransfer
is allowed to take place. Transfer is canceled if transfer rate (bytes per second) is lower than min_speed for at
least min_time seconds, or if average rate is lower than min_average_speed, or no data is receved for longer

than max_inactivity seconds.

copyurl=template replacement - specifies that URLs, starting from template should be accessed in a different
way (most probably Unix open). The remplate part of the URL will be replaced with replacement. replacement

can be either URL or local path starting from ’/’. It is advisable to end template with ’/’.

linkurl=template replacement [node_path] - mostly identical to copyurl but file won’t be copied. Instead soft-
link will be created. replacement specifies the way to access the file from the frontend, and is used to check
permissions. The node_path specifies how the file can be accessed from computing nodes, and will be used for
soft-link creation. If node_path is missing - local_path will be used instead. Both node_path and replacement
should not be URLs.

NOTE: URLs which fit into copyurl or linkurl are treated as more easily accessible than other URLs. That
means if GM has to choose between few URLs from which should it download input file, these will be tried
first.

Per UNIX user commands:

* mail=e-mail_address - specifies an email address from which the notification mails are sent.

19

e defaultttl=1tl [ttr] - specifies the time in seconds for the SD to be available after job finished (##/) and after job
was deleted (ztr) due to 7#l. Defaults are 7days for ##/ and 30 days for #tr.

e defaultlrms=default_lrms_name default_qgueue_name - specifies names for the LRMS and queue. Queue name
can also be specified in the JD (currently it is not allowed to override used LRMS by using JD). In new config-

uration file this command is called lrms.

e session=path - specifies path to the directory in which the SD is created. If the path is * the default one is used

- SHOME/ jobs . In new configuration file this command is called sessiondir.

e cachedir=path [link_path] - specifies the directory to store cached data. Empty path disables caching. Default
is not to cache data. Optional link_path specifies the path at which cache is accessible at computing nodes.
If link_path is set to ’. files are not soft-linked, but copied to session directory. In old configuration file this

command is called cache.

e privatecache=path [link_path] - same as cache command, but cache belongs (owned) to user. For shared caches
use ’cache’.

* cachedata=path - allows to specify separate place to store cache files containing data itself. This can be useful
in case of big data storage available only on NSF server which does not support file locking. If command or path
is missing - default is to store data at place specified in cache or privatecache command, together with control
files.

* cachesize=high_mark [low_mark] - specifies high and low water-mark for space used by cache. Values are
specified in bytes. Both high_mark and low_mark can be negative values. In that case corresponding positive
value means space left on filesystem. If low_mark is omitted it becomes equal to high_mark. By default this
feature is turned off. To turn it off explicitly cachesize without parameters should be specified. If turned off

cache will grow up till it fills whole file system.

* maxrerun=number - specifies maximal number of times job will be allowed to rerun after it failed in LRMS.
Default value is 2. This only specifies a upper limit. Actual number is provided in job description and defaults
to 0.

All per-user commands should be put before control command which initiates serviced user.

e control=path username [username [...]] - This option initiates UNIX user as being serviced by the GM. path
refers to the control directory (see section 6 for the description of control directory). If the path is * the default
one is used - SHOME/ jobstatus . username stands for UNIX name of the local user. Multiple names can be
specified. If the name is * it is substituted by all names found in file /etc/grid-security/grid-mapfile (for the
format of this file one should study the Globus project [10]).

Also the special name ’.’(dot) can be used. Corresponding control directory will be used for any user. This
option should be the last one in the configuration file. In new configuration file command controldir=path is

also available. It uses special username ’.” and is always executed last independent of placement in file.

* helper=username command [argument [argument [...]]] - associates external program with the local UNIX
user. This program will be kept running under account of the specified user. username stands for the name of
the user. Special names can be used: **’ - all names from /etc/grid-security/grid-mapfile, °.” - root user. The
user should be already configured with control option (except root, who is always configured). command is an

executable and arguments are passed as arguments to it.

Following are global commands supported only in new configuration file. Most of them are specific to underlying

LRMS (PBS in this case) and are passed in environment variables if old configuration file is used.

20

e pbs_bin_path=path - path to directory which contains PBS commands.

* pbs_log_path=path - path to directory with PBS server’s log files.

gnu_time=path - path to time utility.
tmpdir=path - path to directory for temporary files.
runtimedir=path - path to directory which contains runtimenvironment scripts.

shared_filesystem=yeslno - if compiting nodes have an access to session directory through a shared filesystem
like NFS. Corresponds to an environement variable RUNTIME_NODE_SEES_FRONTEND.

nodename=command - command to obtain hostname of computing node.
scratchdir=path - path on computing node where to move session directory before execution.
shared_scratch=path - path on frontend where scratchdir can be found.

nodename=command - command to obtain hostname of computing node.

In the command arguments (paths, executables, ...) following substitutions can be used:

%R
%C
%U
%ou
Pog
%H
P%Q
%L
%W
%G
Yoc
%1
%S

%0

- session root - see command session

- control dir - see command control

- username

- userid - numerical

- groupid - numerical

- home dir - home specified in /etc/passwd

- default queue - look command ’defaultlrms’

- default Irms - look command ’defaultlrms’

- installation path - ${NORDUGRID_LOCATION}
- globus path - ${GLOBUS_LOCATION}

- list of all control directories

- job’s ID (for plugins only, substituted in runtime)
- job’s state (for authplugin plugins only, substituted in runtime)

- reason (for localcred plugins only, substituted in runtime).

Possible reasons are:

new - new job, new credentials

renew - old job, new credentials

write - write/delete file, create/delete directory (through gridftp)
read - read file, directory, etc. (through gridftp)

extern - call external program (grid-manager)

21

Some configuration parameters can be specified from command line while starting the GM:

grid-manager [-h] [-C level] [-d level] [-c path] [-F] [-U uid[:gid]] [-L path] [-P path]

-h - short help,

-d - debug level,

-L - name log file (overwrites value in configuration file),

-P - name for file containing process id (overwrites value in configuration file),

-U - user and gropu id to use for running daemon,

-F - do not make process daemon,

-c - name od configuration file,

-C - remove old information before starting: 1- remove finished jobs, 2 - remove active jobs too, 3- also remove
everything that looks like junk.

9.2 Configuration of the GridFTP Server

Default location of the GFS configuration file is /etc/arc.conf or SNORDUGRID_LOCATION/etc/gridftpd.conf. For-
mat of these configuration files is similar to that of the GM. It also supports generic commands described at the
beginning of previous section 9.1. In the new format sections [common] and [gridftpd] are used. Commands specific
to the GFS are described below.

* port=number - specifies TCP/IP port number. Default is 2811.

* include=path - include contents of another file. Generic commands can’t be specified there.

* encryption=yeslno - specifies if server will allow data transfer to be encrypted. Default is yes.
e pluginpath=path - specifies the path where plugin libraries are installed

* allowunknown=yeslno - if set to yes clients are not checked agains grid-mapfile. Hence only access rules

specified in this configuration file will be applied.

e firewall=hostname - use IP address of the hostname in response to PASV command instead of IP address of a
network interface of computer. You can write IP address directly instead of hostname. This command may be if
server is situated behind NAT.

* unixgroup=group rule - define local UNIX user and optionally UNIX group to which user belonging to specified
authorization group is mapped (see Section 9.3 for definition of group). Local names are obtained from specified
rule. If specified rule could not produce any mapping, next command is used. Mapping stops at first matched
rule. Following rules are supported:

— mapfile file - user’s subject is matched against list of subjects stored inspecified file, one per line followed
by local UNIX name.

— simplepool directory - user is assigned one of local UNIX names stored in a file directory/pool, one per
line. Used names are stored in other files placed in the same directory. If UNIX name was not used for 10

days, it may be reassigned to another user.

— lemaps library directory database - call LCMAPS functions to do mapping. Here /ibrary is path to shared
library of LCMAPS, either absolute or relative to directory; directory is path to LCMAPS installation
directory, equivalent of LCMAPS_DIR variable; database is path to LCMAPS database, equivalent to
LCMAPS_DB_FILE variable. Each arguments except library is optional and may be either skiped or
replaced with **.

22

— mapplugin timeout plugin [argl [arg2 [...]]] - run external plugin executable with specified arguments.
Execution of plugin may not last longer than timeout seconds. Rule matches if exit code is 0 and there
is UNIX name printed on stdout. Name may be optionaly followed by UNIX group separated by ’:’. In
arguments following substitions are applied before plugin is started:

% %D - subject of users’s cerificate,

* %P - name of credentials’ proxy file.
* unixvo=vo rule - same as unixgroup for users belonging to Virtual Organization (VO) vo.

* unixmap=[unixname]|[:unixgroup] rule - define local UNIX user and optionally group used to represent con-
nected client. rule is one of those allowed for authorization groups (see Section 9.3) and for unixgroup/unixvo.
In case of mapping rule username is one, provided by rule. Otherwise specified unixname:unixgroup is taken.

Both unixname and unixgroup may be either omited or set to **’ to specify missing value.

* groupcfg=name - is put into subsections representnig plugin or [group] section and defines if that section is
effective. In old format it selects the group to which all following lines apply. Only unaffected option is

groupcfg. If name is empty (or no groupcfg is used at all) following lines apply to all users.

Subsections of gridftpd section specifies plugins which serve virtual FTP path (similar to mount command of UNIX).
Name of subsection is irrelevant. In old format this section starts with command plugin path library_name and ends

with keyword end. Inside subsection following commands are supported

e plugin=library_name - use plugin library_name to serve virtual path.

* path=path - virtual path to serve.

GFS comes with 3 plugins: filepligin.so, gaclplugin.so and jobplugin.so.

— jobplugin.so does not require any specific options in case of old configuration format. It reads the config-
uration file of the GM located at the standard place as specified in the section 9.1. Following options are
supported:

* configfile=path - defines non-standard place for GM’s configuration file,

« allownew=yeslno - specifies if new jobs can be submitted. Default is yes.

* unixgroup/unixvo/unixmap - same options like in top-level GFS configuration. If mapping succeeds
obtained local user will be used to run submitted job.

— filepligin.so supports following options:

* mount=path - defines the place on local filesystem to which file access operations apply

= dir=path options - specifies access rules for accessing files in path (relative to virtual and real path)
and all the files below.
options is the list of the following keywords:

- nouser - do not use local file system rights, only use those specifies in this line
- owner - check only file owner access rights
- group - check only group access rights
- other - check only "others" access rights
The options above are exclusive. If none of the above specified usual Unix access rights are applied.
- read - allow reading files

- delete - allow deleting files

23

- append - allow appending files (does not allow creation)

- overwrite - allow overwriting already existing files (does not allow creation, file attributes are not

changed)
- dirlist - allow obtaining list of the files
- cd - allow to make this directory current

- create owner:group permissions_or:permissions_and - allow creating new files. File will be
owned by owner and owning group will be group. If **’ is used, the user/group to which con-
nected user is mapped will be used. The permissions will be set to permissions_or & permis-

sions_and (second number is reserved for the future usage).

- mkdir owner:group permissions_or:permissions_and - allow creating new directories.

— gaclpligin.so does not have options in case of the old configuration. First line of it’s configuration contains
local path (root directory) served by it. Rest till keyword end contains GACL [11] XML used to setup
initial access rules for every newly created file and directory. If GACL XML is empty then there will be
no default ACLs created for new files and directories. That means ACL of parent directory will be used.
For the new configuration format following options are supported: gacl=gacl - GACL XML, mount=path
- local path server by plugin.

XML may contain variables which are replaced with values taken from client’s credentials. Following

variables are supported:

Ssubject - subject of user’s certificate (DN),

Svoms - subject of VOMS[[12] server (DN),
$vo - name of VO (from VOMS certificate),
$role - role (from VOMS certificate),

Scapability - capabilities (from VOMS certificate),

$group - name of group (from VOMS certificate) .

Additionally root directory must contain .gacl file with initial ACL. Otherwise rule will be “deny all for

everyone”.

Some configuration parameters can be specified from command line while starting the GFS:

gridftpd [-h] [-p number] [-n number] [-b number] [-B number] [-d level] [-c path] [-F] [-U uid[:gid]] [-L path] [-P
path]

-h - short help,

-d - debug level,

-L - name log file (overwrites value in configuration file),

-P - name for file containing process id (overwrites value in configuration file),

-U - user and gropu id to use for running daemon,

-F - do not make process daemon,

-c - name od configuration file,

-p - TCP/IP port number,

-n - maximal number of simultaneously served connection,

-b - default size of buffer used for data transfer (default is 64kB),

-B - maximal size of buffer used for data transfer (default is 640kB).

24

9.3 Authorization

Authorization is performed at GFS by applying set of rules. Each rule takes one line in the group section. For

information about supported rules please read “Configuration and authorisation of ARC (NorduGrid) Services” [9].

9.4 LRMS support

The GM comes with support for several LRMS. And this number is slowly growing. Features explained below are
for PBS backend. This support is provided through submit-pbs-job, cancel-pbs-job, scan-pbs-job scripts. submit-pbs-
Jjob creates job’s script and submits it to PBS. Created job’s script is responsible for moving data between frontend
machine and cluster node (if required) and execution of actual job. Alternatively it can download input files and upload

output if “localtransfer no” is specified in the configuration file.

Behavior of submission script is mostly controlled using environment variables. Most of them can be specified on
frontend in GM’s environment and overwritten on cluster’s node through PBS configuration. Some of them may be

set in configuration file too.

PBS_BIN_PATH - path to PBS executables. Like /usr/local/bin for example. pbs_bin_path configuration command.
PBS_LOG_PATH - path to PBS server logs. pbs_log_path configuration command.

TMP_DIR - path to directory to store temporary files. Default value is /tmp. tmpdir configuration command.

RUNTIME _CONFIG_DIR - path where runtime setup scripts can be found. runtimedir configuration command.

GNU_TIME - path to GNU time utility. It is important to path to utility compatible with GNU time. If such utility
is not available, modify submit-pbs-job to either reset this variable or change usage of available utility. gnu_time

configuration command.

NODENAME - command to obtain name of cluster’s node. Default is /bin/hostname -f. nodename configuration

command.

RUNTIME _LOCAL_SCRATCH_DIR - if defined should contain path to the directory on computing node, which can

be used to store job’s files during execution. scratchdir configuration command.

RUNTIME _FRONTEND_SEES_NODE - if defined should contain path corresponding to RUNTIME_LOCAL_SCRATCH_DIR

as seen on frontend machine. shared_scratch configuration command.

RUNTIME_NODE_SEES_FRONTEND - if set to “no” means computing node does not share filesystem with fron-
tend. In that case content of the SD is moved to computing node by using means provided by the LRMS. Results are

moved back after job’s execution in a same way. shared_filesystem configuration command.

Figures 2,3.4 present some possible combinations for RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES_D}
and explain how data movement is performed. Pictures a) corresponds to the situation right after all input files have
been gathered in the session directory and show the actions taken right after the job’s script starts. Pictures b) shows
the situation while the job is running and the actions which are taken right after it has finished. Pictures c) illustrates
the final situation, when the job’s output files are ready to be uploaded to an external storage element or be downloaded

by the user.

9.5 Runtime environment

The GM can run specially prepared BASH scripts prior creation of job’s script, before and after executing job’s main
executable. Those scripts are requested by user through runtimeenvironment attribute in RSL and are run with only

argument set equal to ’0’, ’1” or *2’ during creation of job’s script, before execution of main executable and after main

25

Frontend Cluster node

Session directory Session directory

Figure 2: Both RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES_NODE are undefined. It
is assumed that session directories are visible from computing nodes. The job is executed directly in the session
directory prepared by GM on the frontend.

executable finished accordingly. They all are run through BASH’s ’source’ command, and hence can manipulate with
shell variables. With argument 0’ scripts are run by the GM on frontend. Some environment variables are defined in

that case and can be changed to influence job’s execution later:

* joboption_directory - session directory.

* joboption_args - command to be executed as specified in RSL.

* joboption_env_# - array of 'NAME=VALUE’ environment variables (not bash array).

* joboption_runtime_# - array of requested runtimeenvironment names (not bash array).

* joboption_num - runtimeenvironment currently beeing processed (number starting from 0).
* joboption_stdin - name of file to be attached to stdin handle.

* joboption_stdout - same for stdout.

* joboption_stderr - same for stderr.

* joboption_maxcputime - amout of CPU time requested (minutes).

* joboption_maxmemory - amout of memory requested (megabytes).

* joboption_count - number of processors requested.

* joboption_Irms - LRMS to be used to run job.

* joboption_queue - name of a queue of LRMS to put job into.

* joboption_nodeproperty_# - array of properties of computing nodes (LRMS specific, not bash array).
* joboption_jobname - name of the job as given by user.

* joboption_rsl - whole RSL for very clever submission scripts.

* joboption_rsl_name - RSL attributes and values (like joboption_rsl_executable="/bin/echo”)

For example joboption_args could be changed to wrap main executable. Or joboption_runtime could be expanded if

current one depends on others.

With argument ’1’ scripts are run just before main executable is run. They are executed on computing node. Such
script can prepare environment for some third-party software package. A current directory in that case is one which

would be used for execution of job. Variable HOME also points to that directory.

26

Frontend Cluster node

Session directory > | |

: I 7/7/7/7// [
. Job file :_ _/J/_O}J/_;E}/ /—//IN:OPY before execution

Scratch directory)
Frontend Cluster node
Session directory » | Session directory I
limported from
lfrontend — — - — - —
stdout+stderq - Istdout+stdery MOVE |after execution
b)

- FT-LINK
Scratch directory

Copy of session dirJ’

Job file/

Frontend Cluster node

Session directory

Se i |

| ;7777777 |

Job files/ | Wimb file / |

c) . N _/) |

Scratch directory

Figure 3: RUNTIME_LOCAL_SCRATCH_DIR is set to the location of the scratch directory on the computing node,
RUNTIME_FRONTEND_SEES_NODE is undefined.

a) After the job script starts all input files are moved to ’scratch directory’ on the computing node.

b) The job runs in a separate directory in ’scratch directory’. Only the files representing the job’s stdout and
stderr are placed in the original ’session directory’ and soft-linked in ’scratch’. After execution all files
from ’scratch’ are moved back to the original ’session directory’.

c) All output files are in ’session directory’ and are ready to be uploaded/downloaded.

27

Figure 4: Both RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES_NODE are set to the lo-
cation of the scratch directory on the computing node and the location where this scratch directory is accessible from

a)

Session directory

Frontend

Job file

Cluster

on direct

node

S |
F /7 /7 /7 /7 |
_/Jé)/b{/fé}/ /_jl | copY béfore execution
L \

Scratch directory

}

Frontend

SOFT-LINK

Cluster

node

MOVE after exegqution

Scratch directory

Session directory

Session directory

5/ /ZﬁZCG?V
Job flle Job file
LAl LS, ﬂ., <
— _I_ _______________________
Frontend Cluster node

n direct

:7//** /7/7/7/‘/‘
Job flle
- _//J/_//J/

Scratch directory

the frontend, respectively .

a)

b)

c)

After the job script starts all input files are moved to ’scratch directory’ on the computing node.
original ’session directory’ is removed and replaced with a soft-link to copy of session directory in ’scratch

directory’ as seen on the frontend.

The job runs in a separate directory in ’scratch directory’. All files are also available on frontend through
the soft-link. After execution the soft-link is replaced with a directory and all files from ’scratch’ are

moved back to the original ’session directory’.

All output files are in ’session directory’ and are ready to be uploaded/downloaded.

28

With argument ’2’ scripts are executed after main executable finished. Main purpose is to clean possible changes done
by scripts run with ’1° (like removing temporary files). Execution of scripts at that stage also happens on computing
node and is not reliable. If the job is killed by LRMS they most probably won’t be executed.

10 Installation

To install GM as part of ARC-enabled site please read “NorduGrid ARC server installation instructions” at http:

//www.nordugrid.org/documents/ng-server-install.html.

10.1 Requirements

The GM is mostly written using C++. It was tested and should compile on recent enough Linux systems using gcc
compiler and GNU make (gcc versions 2.95, 2.96, 3.2, 3.4 were tested). You will also need Globus Toolkit™ of
version higher than 2.2 installed http://www-unix.globus.org/toolkit/.

10.2 Setup of the Grid Manager

For in-depth information about how to properly setup the GM and related software please read “NorduGrid ARC
server installation instructions” at http://www.nordugrid.org/documents/ng-server-install.html. Follow

that manual to install GM, configure and run it. Additional tips are described here.

The GM is designed to be able to run both as root and as ordinary user. You can chose the name of the user by using

corresponding command in configuration file. It is better run GM as root if You want to serve few users.

The GM writes debug information into a file /var/log/grid-manager.log by default. . Also file /var/log/gm-jobs.log
(default path in configuration template, turned off by default) contains information about all started and finished jobs,

2 lines per job (1 when job is started and 1 after it finished).

10.3 Setup of the GridFTP Server

For in-depth information about how to properly setup the GM and related software please read “NorduGrid ARC
server installation instructions” at http://www.nordugrid.org/documents/ng-server—install.html. Follow

that manual to install GM, configure and run it. Additional tips are described here.

To make GFS to interoperate with other parts of the ARC only one jobplugin.so needs to be configured. It is advisable

to use the template configuration file. You can leave only part which configures jobplugin.so plugin.

10.4 Usage

Refer to the description of the User Interface part [13] and extensions to RSL [[14] for using the GM.

10.5 Running as non-root

Bot GM and GFS are primarily designed to be run by the root UNIX account and serve multiple global Grid identities
mapped to several UNIX accounts. Nevertheless it is possible to use non-root accounts to run these services at the cost

of some functionality loss as described below.

29

http://www.nordugrid.org/documents/ng-server-install.html
http://www.nordugrid.org/documents/ng-server-install.html
http://www-unix.globus.org/toolkit/
http://www.nordugrid.org/documents/ng-server-install.html
http://www.nordugrid.org/documents/ng-server-install.html

There are no drawbacks of running GFS with gaclplugin or fileplugin under a non-root account as long as the only
Grid identity used is that of the user who runs the services and all served files and directories are owned by the server’s

account.

In order for GM and GFS with jobplugin to be able to cooperate, both services must be run either by the same non-
root account or one of the services must be run under the root account. This is needed because the two services
communicate over a local filesystem, hence they must have full access to the same set of files.

As long as GFS with jobplugin is run under a non-root account , no mapping from Grid identity to local UNIX account
takes place. All alowed Grid users are assigned the server’s account and are then processes by GM using same account.

The only way to overcome this limitation is to run one GFS per local account with proper access control configured.

Because GM has to impersonate a user’s local account while communicating with the LRMS, it can serve only the
account it is run under (unless it is run under the root account, of course). As in the case of GFS, multiple instances of
GM may be run, one per local account. This solution has some drawbacks. The GM looses possibility to share cached
files among serviced users. In addition, it is not possible to control the load on a frontend by limiting the number of

simultatenuosly running downloader and uploader modules.

One also has to take into account that the private part of the GSI infrastructure (private key of a host at least) has to be

duplicated for every account used to run GFS.

Appendix A. Job control over jobplugin.so

Virtual tree

Under the mount point of the jobplugin, a user connecting with a gridftp client will see virtual directories representing
the jobs belonging to him/her. Directory names are job identifiers, each representing one job . These directories are
directly connected to session directories of jobs and contain the files and subdirectories that are visible on the frontend.

If a job’s xRSL has gmlog specified, then the job’s directory also contains a virtual subdirectory of that name hold-
ing files with information about the job as created by GM. The ’errors’ and ’status’ files are especially usefull for
troubleshooting. ’errors’ contains the stderr output of the various modules run by GM during job processing stages

(downloader, uploader, job’s submission to LRMS). ’status’ contains one word representing the job’s state .

Also under the jobplugin’s mount point there is an additional directory named "new" — used to submit new jobs — and
another directory named “’info”. The latter has subdirectories named after job ids , each of which contains files with

information about a job. These are the same files that can be accessed in the subdirectory specified through gmlog.

Submission

Each xRSL put into the “new” directory by a gridftp client is treated as a new job’s description. GFS’s jobplugin
parses the XRSL and returns the client a positive response if there were no errors in the request.

The new job gets an identifier and a directory with the corresponding name appears. If the job’s description contains
input files which should be transferred from the client’s machine, the client must upload them to that directory under

specified names.

The job identifier reserved by GFS to a new job must be somehow communicated back to the client. Within the
bounds of the FTP protocol, this is achieved in the following way. Prior to uploading the xRSL, the client issues

a CWD command to change the current directory to “new”. In turn, the server responds with a redirect to the new

30

session directory named after the reserved identifier. The client has now found out the job’s id, and proceeds with
uploading the xRLS.

Actions

Various actions to affect processing of an existing job are requested by uploading special XRSL files into directory
“new”. Such an xRSL may consist of only 2 parameters - action for action to be performed, and jobid to identify the
job to be affected. All other parameters are ignored.

The currently supported actions are:

cancel to cancel a job

clean to remove a job from computing resource
renew to renew credentials delegated to a job
restart to restart a job after failure at some phases

Alternatively, it is also possible to perform some of these actions by using the shortcut FTP operations described

below.

Cancel

A job is canceled by performing a DELE (delete file) command on the directory representing the job. It can take some

time (a few minutes) before the job is actually canceled. Nevertheless, the client gets a response immediately.

Clean

A job’s content is cleaned by performing a RMD (remove directory) command on the directory representing the job.
If the job is in "FINISHED" state it will be cleaned immediately. Otherwise it will be cleaned after it reaches state
"FINISHED".

Renew

If a client requests CWD to a job’s session directory, credentials passed during authentication are compared to the
current credentials of the job. If the validity time of the new credentials is longer, the job’s current credentials are

replaced with the new ones.

Appendix B. Library libarcdata

libarcdata is now part of libngui library. It’s functions are declared in a header file arcdata.h. They correspond to ng*

utilities meant for data handling - arcacl, arccp, arcls, arcrm, arctransfer. It consists of following functions:

void arcacl (const std::string& file_url, const std::string& command, int timeout = 0);
void arcregister (const std::string& source_url, const std::string& destination_url, bool secure =

void arccp (const std::string& source_url, const std::string& destination_url, bool secure = false

31

void arcls(const std::string& dir_url, bool show_details = false, bool show_urls = false, int recursi
void arcrm(const std::string& file_url, bool errcont = false, int timeout = 0);

void arctransfer(const std::string& destination, std::list<std::string>& sources, int timeout = 0);

Additionally this library contains C++ classes used by ng * data management utilities. Those are described in “ARC::DataMove

Reference Manual”.

Appendix C. Error messages of GM

If job has not finished successfully the GM put one or more lines into job.ID.failed. Possible valuesinclude those
generated by the GM itself:

32

Error string

Reason/description

Internal error

Error in internal algorithm

Internal error: can’t read local file

Error manipulating files in the control directory

problems)

Failed reading local job information -/l-
Failed reading status of the job -//-
Failed writing job status -//-
Failed during processing failure -//-
Serious troubles (problems during processing | -//-

Failed initiating job submission to LRMS

Could not run backend executable to pass job to LRMS

Job submission to LRMS failed

Backend executable supposed to pass job to LRMs returned non-zero exit
code

Failed extracting LRMS ID due to some in-
ternal error

Output of Backend executable supposed to contain local ID of passed job
could not be parsed

Failed in files upload (post-processing)

Failed to upload some or all output files

Failed in files upload due to expired creden-

tials - try to renew

Failed to upload some or all output files most probably due to expired

credentials (proxy certificate)

Failed to run uploader (post-processing)

Could not run uploader executable

uploader failed (postprocessing)

Generic error related to uploader component

Failed in files download (pre-processing)

Failed to upload some or all input files

Failed in files download due to expired cre-

dentials - try to renew

Failed to download some or all input files most probably due to expired

credentials (proxy certificate)

Failed to run downloader (pre-processing)

Could not run downloader executable

downloader failed (preprocessing)

Generic error related to downloader component

User requested to cancel the job

GM detected external request to cancel this job, most probably issued by

user

Could not process RSL

Job description could not be processed to syntax errors or missing ele-

ments

User requested dryrun. Job skiped.

Job description contains request not to process this job

LRMS error: (CODE) DESCRIPTION

LRMS returned error. CODE is replaced with numeric code of LRMS,
and DESCRIPTION with textual description

Plugin at state STATE failed: OUTPUT

External plugin specified in GM’s configuration returned non-zero exit
code. STATE is replcaced by name of state to which job was going to be
passed, OUTPUT by textual output generated by plugin.

Failed running plugin at state STATE

External plugin specified in GM’s configuration could not be executed.

Provided by downloader component (URL is replcaced by source of input file, FILE by name of file):

33

Error string

Reason/description

Internal error in downloader

Generic error

Input file: URL - unknown error

Generic error

Input file: URL - unexpected error Generic error

Input file: URL - bad source URL Source URL is either malformed or not supported

Input file: URL - bad destination URL Shouldn’t happen

Input file: URL - failed to resolve source lo- | File either not registred or other problems related to Data Indexing ser-
cations vice.

Input file: URL - failed to resolve destination | Shouldn’t happen

locations

Input file: URL - failed to register new desti-
nation file

Shouldn’t happen

Input file: URL - can’t start reading from

source

Problems related to accessing instance of file at Data Storing service.

Input file: URL - can’t read from source

-//-

Input file: URL - can’t start writing to desti-
nation

Access problems in a session directory

Input file: URL - can’t write to destination

-//-

Input file: URL - data transfer was too slow

Timeouted while trying to download file

Input file: URL - failed while closing connec-

tion to source

Shouldn’t happen

Input file: URL - failed while closing connec-
tion to destination

Shouldn’t happen

Input file: URL - failed to register new loca-

Shouldn’t happen

tion

Input file: URL - can’t use local cache Problems with GM cache

Input file: URL - system error Operating System returned error code where unexpected

Input file: URL - delegated credentials ex- | Access to source requires credententials and they are either outdated or
pired missing (not delegated).

User file: FILENAME - Bad information | In job description there is a checksum provided for file uploadable by

about file: checksum can’t be parsed.

user interface and this record can’t be interpreted.

User file: FILENAME - Bad information
about file: size can’t be parsed.

In job description there is a size provided for file uploadable by user

interface and this record can’t be interpreted.

User file: FILENAME - Expected file. Direc-
tory found.

Instead of file uploadable by user interface GM found directory with

same name in a session directory.

User file: FILENAME - Expected ordinary
file. Special object found.

Instead of file uploadable by user interface GM found special object with

same name in a session directory.

User file: FILENAME - Delivered file is big-
ger than specified.

The size of file uploadable by user interface is bigger than specified in

job description.

User file: FILENAME - Delivered file is un-

readable.

GM can’t check user uploadable file due to some internal error. Most

probabl}zhue to improperly configured local permissions.

User file: FILENAME - Could not read file

to compute checksum.

GM can’t read user uploadable file due to some internal error. Most

probably due to improperly configured local permissions.

Provided by uploader component (URL is replcaced by destination of output file) :

Error string

Reason/description

Internal error in uploader

Generic error

Output file: URL - unknown error

Generic error

Output file: URL - unexpected error

Generic error

User requested to store output locally URL

Destination is URL of type file.

Output file: URL - bad source URL

Shouldn’t happen

Output file: URL - bad destination URL

Destination URL is either malformed or not supported

Output file: URL - failed to resolve source

locations

Shouldn’t happen

Output file: URL - failed to resolve destina-

tion locations

Problems related to Data Indexing service.

Output file: URL - failed to register new des-

tination file

-//-

Output file: URL - can’t start reading from

source

User request to store output file, but there is no such file or there are

problems accessing session directory

Output file: URL - can’t start writing to des-
tination

Problems with Data Storing services

Output file: URL - can’t read from source

Problems accessing session directory

Output file: URL - can’t write to destination

Problems with Data Storing services

Output file: URL - data transfer was too slow

Timeout during transfer

Output file: URL - failed while closing con-

nection to source

Shouldn’t happen

Output file: URL - failed while closing con-

nection to destination

Shouldn’t happen

Output file: URL - failed to register new lo-

cation

Problems related to Data Indexing service.

Output file: URL - can’t use local cache

Shouldn’t happen

Output file: URL - system error

Operating System returned error code where unexpected

Output file: URL - delegated credentials ex-
pired

Access to destination requires credententials and they are either outdated

or missing (not delegated).

Coming from LRMS (PBS) backend:

35

Error string Reason/description

Submission: Configuration error.

Submission: System error.

Submission: Job description error.

Submission: Local submission client be-

haved unexpectedly.

Submission: Local submission client failed.

Appendix D. A-Rex WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://www.nordugrid.org/schemas/a-rex"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory"
xmlns:bes-mgmt="http://schemas.ggf.org/bes/2006/08/bes-management"
xmlns:deleg="http://www.nordugrid.org/schemas/delegation"
xmlns:wsrf-rpw="http://docs.oasis-open.org/wsrf/rpw-2"
xmlns:a-rex="http://www.nordugrid.org/schemas/a-rex">
<wsdl:import namespase="http://schemas.ggf.org/bes/2006/08/bes-factory" location="./bes-factory.wsd
<wsdl:import namespase="http://schemas.ggf.org/bes/2006/08/bes-management™ location="./bes-manageme
<wsdl:import namespase="http://www.nordugrid.org/schemas/delegation" location="../schemas/delegatio
<wsdl:import namespase="http://docs.oasis-open.org/wsrf/rpw-2" location="http://docs.oasis-open.org
<wsdl:types>
<xsd:schema targetNamespace="http://www.nordugrid.org/schemas/a-rex">
<xsd:import namespace="http://www.w3.0rg/2005/08/addressing" schemaLocation="./ws-addr.xsd"/>
<xsd:simpleType name="ActivitySubStateType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Accepting"/>
<xsd:enumeration value="Accepted"/>
<xsd:enumeration value="Preparing"/>
<xsd:enumeration value="Prepared"/>
<xsd:enumeration value="Submiting"/>
<xsd:enumeration value="Executing"/>
<xsd:enumeration value="Killing"/>
<xsd:enumeration value="Executed"/>
<xsd:enumeration value="Finishing"/>

<xsd:enumeration value="Finished"/>

36

<xsd:enumeration value="Failed"/>
<xsd:enumeration value="Deleted"/>
<xsd:enumeration value="Pending"/>
<xsd:enumeration value="Held"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:element name="State" type="a-rex:ActivitySubStateType"/>
<xsd:complexType name="ResourceInformationDocumentType">
<xsd:sequence>
<xsd:element name="BESFactory" type="bes-factory:FactoryResourceAttributesDocumentType"
<xsd:complexType name="Glue2Resource" minOccurs='0’>
<xsd:sequence>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounde
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Activities" minOccurs='0'>
<xsd:sequence>
<xsd:complexType name="Activity" minOccurs='0’ maxOccurs='unbounded’ >
<xsd:sequence>
<xsd:element name="ActivityIdentifier" type="wsa:EndpointReferenceType"/>
<xsd:element ref="bes-factory:ActivityDocument" minOccurs='0"/>
<xsd:complexType name="Glue2Job" minOccurs='0'>
<xsd:sequence>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs=";
</xsd:sequence>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ChangeActivityStatusRequestType">
<xsd:sequence>
<xsd:element name="ActivityIdentifier" type="wsa:EndpointReferenceType"/>
<xsd:element name="0ldStatus" type="bes-factory:ActivityStatusType" minOccurs="0"/>
<xsd:element name="NewStatus" type="bes-factory:ActivityStatusType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="ChangeActivityStatus" type="a-rex:ChangeActivityStatusRequestType"/>
<xsd:complexType name="ChangeActivityStatusResponseType">
<xsd:sequence>
<xsd:element name="NewStatus" type="bes-factory:ActivityStatusType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="ChangeActivityStatusResponse" type="a-rex:ChangeActivityStatusResponseTyp

</xsd:schema>

37

</wsdl:types>
<wsdl:message name="ChangeActivityStatusRequest">
<wsdl:part name="ChangeActivityStatusRequest" element="a-rex:ChangeActivityStatus"/>
</wsdl:message>
<wsdl:message name="ChangeActivityStatusResponse">
<wsdl:part name="ChangeActivityStatusResponse" element="a-rex:ChangeActivityStatusResponse"/>
</wsdl:message>
<wsdl:portType name="a-rex">
<wsdl:operation name="ChangeActivityStatus">
<wsdl:documentation>
This operation allows any simple status change request
which involves no additional parameters. It should be
used to modify job/activity execution flow:
- To put job on hold
- To rerun job in case of failure
- To cancel job (same as TerminateActivity of BESFActory)
- To remove/release job - as long as non-existence is a state
- Any other status change no supported by BES
</wsdl:documentation>
<wsdl:input name="ChangeActivityStatusRequest"
message="a-rex:ChangeActivityStatusRequest"/>
<wsdl:output name="ChangeActivityStatusResponse"
message="a-rex:ChangeActivityStatusResponse"/>
<wsdl:fault name="NotAuthorizedFault"
message="bes-factory:NotAuthorizedFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
<wsdl:fault name="InvalidActivityIdentifierFault"
message="bes-factory:InvalidActivityIdentifierFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
<wsdl:fault name="CantApplyOperationToCurrentStateFault"
message="bes-factory:CantApplyOperationToCurrentStateFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
<wsdl:fault name="OperationWillBeAppliedEventuallyFault"
message="bes-factory:0OperationWillBeAppliedEventuallyFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="a-rex" type="a-rex:a-rex">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ChangeActivityStatus">
<soap:operation soapAction="ChangeActivityStatus"/>
<wsdl:input name="ChangeActivityStatusRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="ChangeActivityStatusResponse">
<soap:body use="literal"/>

</wsdl:output>

38

<wsdl:fault name="NotAuthorizedFault">
<soap:fault name="NotAuthorizedFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="InvalidActivityIdentifierFault">
<soap:fault name="InvalidActivityIdentifierFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="CantApplyOperationToCurrentStateFault">
<soap:fault name="CantApplyOperationToCurrentStateFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="OperationWillBeAppliedEventuallyFault">
<soap:fault name="OperationWillBeAppliedEventuallyFault" use="literal" />
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="GetResourcePropertyDocument" type="wsrf-rpw:GetResourcePropertyDocument">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetResourcePropertyDocument">
<soap:operation soapAction="GetResourcePropertyDocument"/>
<wsdl:input name="wsrf-rpw:GetResourcePropertyDocumentRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="wsrf-rpw:GetResourcePropertyDocumentResponse">
<soap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="ResourceUnknownFault">
<soap:fault name="ResourceUnknownFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="ResourceUnavailableFault">
<soap:fault name="ResourceUnavailabbleFault" use="literal" />
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="GetResourceProperty" type="wsrf-rpw:GetResourceProperty">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetResourceProperty">
<soap:operation soapAction="GetResourceProperty"/>
<wsdl:input name="wsrf-rpw:GetResourcePropertyRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="wsrf-rpw:GetResourcePropertyResponse">
<soap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="ResourceUnknownFault">
<soap:fault name="ResourceUnknownFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="ResourceUnavailableFault">

<soap:fault name="ResourceUnavailabbleFault" use="literal" />

39

</wsdl:fault>
<wsdl:fault name="InvalidResourcePropertyQNameFault">
<soap:fault name="InvalidResourcePropertyQNameFault" use="literal" />
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="QueryResourceProperties" type="wsrf:QueryResourceProperties">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="QueryResourceProperties">
<soap:operation soapAction="QueryResourceProperties"/>
<wsdl:input name="wsrf-rpw:QueryResourcePropertiesRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="wsrf-rpw:QueryResourcePropertiesResponse">
<soap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="ResourceUnknownFault">
<soap:fault name="ResourceUnknownFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="ResourceUnavailableFault">
<soap:fault name="ResourceUnavailabbleFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="InvalidResourcePropertyQNameFault">
<soap:fault name="InvalidResourcePropertyQNameFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="UnknownQueryExpressionDialectFault">
<soap:fault name="UnknownQueryExpressionDialectFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="InvalidQueryExpressionFault">
<soap:fault name="InvalidQueryExpressionFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="QueryEvaluationErrorFault">
<soap:fault name="QueryEvaluationErrorFault" use="literal" />
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="a-rex">
<wsdl:port name="delegation" binding="deleg:DelegationBinding">
</wsdl:port>
<wsdl:port name="bes-factory" binding="bes-factory:BESFactoryBinding">
</wsdl:port>
<wsdl:port name="bes-mgmt" binding="bes-mgmt:BESManagementBinding">
</wsdl:port>
<wsdl:port name="GetResourcePropertyDocument" binding="a-rex:GetResourcePropertyDocument">
</wsdl:port>
<wsdl:port name="GetResourceProperty" binding="a-rex:GetResourceProperty">

</wsdl:port>

40

<wsdl:port name="QueryResourceProperties" binding="a-rex:QueryResourceProperties">

</wsdl:port>

<wsdl:port name="a-rex" binding="a-rex:a-rex">

</wsdl:port>

</wsdl:service>

</wsdl

:definitions>

Appendix E. Delegation WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://www.nordugrid.org/schemas/delegation"

xmlns
xmlns
xmlns

xmlns

xmlns:

xmlns
xmlns

xmlns

:SOAP-ENV="http://schemas.xmlsoap.orqg/soap/envelope/"
:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
:xsd="http://www.w3.0rg/2001/XMLSchema"
soap="http://schemas.xmlsoap.org/wsdl/soap/"
:wsdl="http://schemas.xmlsoap.org/wsdl/"
:wsa="http://www.w3.0rg/2005/08/addressing"
:deleg="http://www.nordugrid.org/schemas/delegation">

<wsdl:types>

<xsd:schema targetNamespace="http://www.nordugrid.org/schemas/delegation">

<!-- Common types —-—>
<xsd:simpleType name="TokenFormatType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="x509"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="ReferenceType">
<xsd:sequence>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="DelegatedTokenType">
<xsd:sequence>
<xsd:element name="Id" type="xsd:string"/>
<xsd:element name="Value" type="xsd:string"/>
<xsd:element name="Reference" type="deleg:ReferenceType" minOccurs="0" maxOccurs="unboun
</xsd:sequence>
<xsd:attribute name="Format" type="deleg:TokenFormatType" use="required"/>
</xsd:complexType>
<xsd:element name="DelegatedToken" type="deleg:DelegatedTokenType"/>
<xsd:complexType name="TokenRequestType">
<xsd:sequence>
<xsd:element name="Id" type="xsd:string"/>
<xsd:element name="Value" type="xsd:string"/>

</xsd:sequence>

41

<xsd:attribute name="Format" type="deleg:TokenFormatType" use="required"/>
</xsd:complexType>
<xsd:element name="TokenRequest" type="deleg:TokenRequestType"/>
<!-- Types for messages -->
<xsd:complexType name="DelegateCredentialsInitRequestType">
<xsd:sequence>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="DelegateCredentialsInit" type="deleg:DelegateCredentialsInitRequestType"/>
<xsd:complexType name="DelegateCredentialsInitResponseType">
<xsd:sequence>
<xsd:element name="TokenRequest" type="deleg:TokenRequestType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="DelegateCredentialsInitResponse" type="deleg:DelegateCredentialsInitResponse
<xsd:complexType name="UpdateCredentialsRequestType">
<xsd:sequence>
<xsd:element name="DelegatedToken" type="deleg:DelegatedTokenType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="UpdateCredentials" type="deleg:UpdateCredentialsRequestType"/>
<xsd:complexType name="UpdateCredentialsResponseType">
<xsd:sequence>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="UpdateCredentialsResponse" type="deleg:UpdateCredentialsResponseType"/>
<!-- Faults -—>
<xsd:complexType name="UnsupportedFaultType">
<xsd:sequence>
<xsd:element name="Description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="UnsupportedFault" type="deleg:UnsupportedFaultType"/>
<xsd:complexType name="ProcessingFaultType">
<xsd:sequence>
<xsd:element name="Description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="ProcessingFault" type="deleg:ProcessingFaultType"/>
<xsd:complexType name="WrongReferenceFaultType">
<xsd:sequence>
<xsd:element name="Description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="WrongReferenceFault" type="deleg:WrongReferenceFaultType"/>
</xsd:schema>

</wsdl:types>

42

<wsdl:message name="DelegateCredentialsInitRequest">
<wsdl:part name="DelegateCredentialsInitRequest" element="deleg:DelegateCredentialsInit"/>
</wsdl:message>
<wsdl:message name="DelegateCredentialsInitResponse">
<wsdl:part name="DelegateCredentialsInitResponse" element="deleg:DelegateCredentialsInitRespon
</wsdl:message>
<wsdl:message name="UpdateCredentialsRequest">
<wsdl:part name="UpdateCredentialsRequest" element="deleg:UpdateCredentials"/>
</wsdl:message>
<wsdl:message name="UpdateCredentialsResponse">
<wsdl:part name="UpdateCredentialsResponse" element="deleg:UpdateCredentialsResponse"/>
</wsdl:message>
<wsdl:message name="UnsupportedFault">
<wsdl:part name="Detail" element="deleg:UnsupportedFault"/>
</wsdl:message>
<wsdl:message name="ProcessingFault">
<wsdl:part name="Detail" element="deleg:ProcessingFault"/>
</wsdl:message>
<wsdl:message name="WrongReferenceFault">
<wsdl:part name="Detail" element="deleg:WrongReferenceFault"/>
</wsdl:message>
<wsdl:portType name="DelegationPortType">
<wsdl:operation name="DelegateCredentialsInit">
<wsdl:documentation>
</wsdl:documentation>
<wsdl:input name="DelegateCredentialsInitRequest"
message="deleg:DelegateCredentialsInitRequest"/>
<wsdl:output name="DelegateCredentialsInitResponse"
message="deleg:DelegateCredentialsInitResponse"/>
<wsdl:fault name="UnsupportedFault"
message="deleg:UnsupportedFault"/>
<wsdl:fault name="ProcessingFault"
message="deleg:ProcessingFault"/>
</wsdl:operation>
<wsdl:operation name="UpdateCredentials">
<wsdl:documentation>
</wsdl:documentation>
<wsdl:input name="UpdateCredentialsRequest"
message="deleg:UpdateCredentialsRequest"/>
<wsdl:output name="UpdateCredentialsResponse"
message="deleg:UpdateCredentialsResponse"/>
<wsdl:fault name="UnsupportedFault"
message="deleg:UnsupportedFault"/>
<wsdl:fault name="ProcessingFault"
message="deleg:ProcessingFault"/>
<wsdl:fault name="WrongReferenceFault"

message="deleg:WrongReferenceFault"/>

43

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="DelegationBinding" type="deleg:DelegationPortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="DelegateCredentialsInit">
<soap:operation soapAction="DelegateCredentialsInit"/>
<wsdl:input name="DelegateCredentialsInitRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="DelegateCredentialsInitResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="UpdateCredentials">
<soap:operation soapAction="UpdateCredentials"/>
<wsdl:input name="UpdateCredentialsRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="UpdateCredentialsResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

</wsdl:definitions>

Appendix F. ARC extensions for JSDL schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.nordugrid.org/ws/schemas/jsdl-arc"
xmlns: jsdl-arc="http://www.nordugrid.org/ws/schemas/jsdl-arc"
targetNamespace="http://www.nordugrid.org/ws/schemas/jsdl-arc">
<xsd:simpleType name="GMState_Type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="ACCEPTED"/>
<xsd:enumeration value="PREPARING"/>
<xsd:enumeration value="SUBMIT"/>
<xsd:enumeration value="INLRMS"/>
<xsd:enumeration value="FINISHING"/>
<xsd:enumeration value="FINISHED"/>
<xsd:enumeration value="DELETED"/>
<xsd:enumeration value="CANCELING"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Version_Type">

<xsd:sequence>

44

<xsd:element name="UpperExclusive" type="xsd:string" minOccurs="0"/>
<xsd:element name="LowerExclusive" type="xsd:string" minOccurs="0"/>
<xsd:element name="Exact" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="Exclusive" type="xsd:boolean" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="SessionType_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="SessionType" minOccurs="0"/ -->
<xsd:restriction base="xsd:string">
<xsd:enumeration value="INTERNAL"/>
<xsd:enumeration value="LIMITED"/>
<xsd:enumeration value="READONLY"/>
<xsd:enumeration value="FULL"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="IsExecutable_Type">
<xsd:documentation> For jsdl:DataStaging_Type (default: false) </xsd:documentation>
<!-- xsd:element ref="IsExecutable" minOccurs="0"/ -->
<xsd:restriction base="xsd:boolean"/>
</xsd:simpleType>
<xsd:simpleType name="FileParameters_Type">
<xsd:documentation> For jsdl:DataStaging_Type </xsd:documentation>
<!-- xsd:element ref="IsExecutable" minOccurs="0"/ -->
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType name="JoinOutputs_Type">
<xsd:documentation> For jsdl:JobDescription_Type (default: false) </xsd:documentation>
<!-- xsd:element ref="JoinOutputs" minOccurs="0"/ —-->
<xsd:restriction base="xsd:boolean"/>
</xsd:simpleType>
<xsd:simpleType name="Reruns_Type">
<xsd:documentation> For Jjsdl:JobDescription_Type (default: false) </xsd:documentation>
<!-- xsd:element ref="Reruns" minOccurs="0"// -->
<xsd:restriction base="xsd:integer"/>
</xsd:simpleType>
<xsd:complexType name="RunTimeEnvironment_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="RunTimeEnvironment" minOccurs="0" maxOccurs="unbounded"/ -->
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Version" type="Version_Type" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Middleware_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>

<!-- xsd:element ref="Middleware" minOccurs="0" maxOccurs="unbounded"/ -->

45

<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Version" type="Version_Type" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="RemotelLogging_Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="RemoteLogging" minOccurs="0" maxOccurs="3"/ -->
<xsd:sequence>
<xsd:element name="URL" minOccurs="1" maxOccurs="1" type="xsd:anyURI"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="CredentialServer_Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="CredentialServer" minOccurs="0"/ —-->
<xsd:sequence>
<xsd:element name="URL" minOccurs="1" maxOccurs="1" type="xsd:anyURI"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="LocalLogging_Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="LocalLogging" minOccurs="0" maxOccurs="1"/ -->
<xsd:sequence>
<xsd:element name="Directory" minOccurs="1" maxOccurs="1" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="AccessControlType_Type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="GACL"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="AccessControl_Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="AccessControl" minOccurs="0"/ -->
<xsd:sequence>
<xsd:element name="OwnerAlwaysAllowed" type="xsd:boolean" minOccurs="0"/>
<xsd:element name="Type" type="AccessControlType_Type" minOccurs="0"/>
<xsd:element name="Content" minOccurs="0" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="NotificationType_Type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Email"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Notify_ Type">

<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>

46

<!-- xsd:element ref="Notify" minOccurs="0" maxOccurs="3"/ -->
<xsd:sequence>
<xsd:element name="Type" type="NotificationType_Type" minOccurs="0"/>
<xsd:element name="Endpoint" minOccurs="0" type="xsd:string"/>
<xsd:element name="State" minOccurs="1" maxOccurs="unbounded" type="GMState_Type"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="SessionLifeTime_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="SessionLifeTime" minOccurs="0" maxOccurs="1"/ -->
<xsd:restriction base="xsd:long"/>
</xsd:simpleType>
<xsd:simpleType name="GridTimeLimit_Type">
<xsd:documentation> For Jjsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="GridTimeLimit" minOccurs="0" maxOccurs="1"/ -->
<xsd:restriction base="xsd:positiveInteger"/>
</xsd:simpleType>
<xsd:complexType name="CandidateTarget_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="jsdl-arc:CandidateTarget" minOccurs="0" maxOccurs="1"/ -->
<xsd:sequence>
<xsd:element name="HostName" minOccurs="0" type="xsd:string"/>
<xsd:element name="QueueName" minOccurs="0" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="Time_Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="ProcessingStartTime" minOccurs="0" maxOccurs="1"/ -->
<xsd:restriction base="xsd:dateTime"/>
</xsd:simpleType>
<l-= ->

<xsd:element name="IsExecutable" type="IsExecutable_Type"/>
<xsd:element name="FileParameters" type="FileParameters_Type"/>
<xsd:element name="RunTimeEnvironment" type="RunTimeEnvironment_Type"/>
<xsd:element name="Middleware" type="Middleware_Type"/>
<xsd:element name="RemoteLogging" type="RemoteLogging_ Type"/>
<xsd:element name="LocalLogging" type="LocalLogging_Type"/>
<xsd:element name="AccessControl" type="AccessControl_Type"/>
<xsd:element name="Notify" type="Notify_ Type"/>

<xsd:element name="SessionLifeTime" type="SessionLifeTime_Type"/>
<xsd:element name="SessionType" type="SessionType_Type"/>
<xsd:element name="JoinOutputs" type="JoinOutputs_Type"/>
<xsd:element name="Reruns" type="Reruns_Type"/>

<xsd:element name="CredentialServer" type="CredentialServer_Type"/>
<xsd:element name="GridTimeLimit" type="GridTimeLimit_Type"/>
<xsd:element name="CandidateTarget" type="CandidateTarget_Type"/>

<xsd:element name="ProcessingStartTime" type="Time_Type"/>

47

</xsd:schema>

References

[1] W. Allcock et al., “Data management and transfer in high-performance computational grid environments,” Par-
allel Comput., vol. 28, no. 5, pp. 749-771, 2002.

[2] B. Kénya, The NorduGrid/ARC Information System, The NorduGrid Collaboration, NORDUGRID-TECH-4.

[3] The Globus Resource Specification Language RSL v1.0. [Online]. Available: http://www-fp.globus.org/gram/
rsl_specl.html

[4] A. Anjomshoaa et al. (2005, December) Job submission description language (jsdl) specification v1.0.
GFD-R-P.056. [Online]. Available: http://www.ggf.org/ggf_docs_final.htm

[5] A. Konstantinov, Protocols, Uniform Resource Locators (URL) and Extensions Supported in ARC, The Nordu-
Grid Collaboration, NORDUGRID-TECH-7.

[6] KnowARC. Hosting environment daemon technical manual. . [Online]. Available: (tobereleased)

[7] LFoster et al. (2007, August) Ogsa basic execution service version 1.0. GFD.108. [Online]. Available:
http://www.ogf.org/gf/docs/?final

[8] OASIS. (2006, April) Oasis web services resourceproperties specification. . [Online]. Available: |http:
//docs.oasis-open.org/wsrf/wsrf-ws_resource_properties- 1.2-spec-o0s.pdf]

[9] A. Konstantinov, Configuration and Authorisation of ARC (NorduGrid) Services, The NorduGrid Collaboration,
NORDUGRID-TECH-6.

[10] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” International Journal of Super-
computer Applications, vol. 11, no. 2, pp. 115-128, 1997.

[11] A.McNab, “The GridSite Web/Grid security system: Research Articles,” Softw. Pract. Exper., vol. 35, no. 9, pp.
827-834, 2005.

[12] R. Alfieri et al., “From gridmap-file to VOMS: managing authorization in a Grid environment,” Future Gener.
Comput. Syst., vol. 21, no. 4, pp. 549-558, 2005.

[13] M. Ellert, The NorduGrid toolkit user interface, The NorduGrid Collaboration, NORDUGRID-MANUAL-1.

[14] O. Smirnova, Extended Resource Specification Language, The NorduGrid Collaboration, NORDUGRID-
MANUAL-4.

48

http://www-fp.globus.org/gram/rsl_spec1.html
http://www-fp.globus.org/gram/rsl_spec1.html
http://www.ggf.org/ggf_docs_final.htm
(to be released)
http://www.ogf.org/gf/docs/?final
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

	Introduction
	Main concepts
	Input/output data
	Job flow
	URLs
	Internals
	Internal Files of the Grid Manager
	GridFTP Interface
	Web Service Interface
	Basic Execution Service Interface
	Extensions to OGSA BES interface
	Delegation Interface
	Local Information Description Interface
	Supported JSDL elements
	ARC-specific JSDL Extensions

	Cache
	Structure
	How it works

	Files and directories
	Modules
	Directories

	Configuration
	Configuration of the Grid Manager
	Configuration of the GridFTP Server
	Authorization
	LRMS support
	Runtime environment

	Installation
	Requirements
	Setup of the Grid Manager
	Setup of the GridFTP Server
	Usage
	 Running as non-root

