
Project no. 032691

KnowARC
Grid-enabled Know-how Sharing Technology Based on ARC Services and Open Standards

Specific Targeted Research Project
Information Society Technologies

DESIGN OF ARC STORAGE SYSTEM

Author: Zsombor Nagy (NIIF)

Last updated: 2007 september 13.

The new ARC storage system
The new ARC storage system is a distributed system for storing replicated files on several Storage
Elements and manage them in a global namespace. The files can be grouped into collections, and a
collection can contain sub-collections and sub-sub-collections in any depth. There is a dedicated
root collection to gather all collections to the global namespace. This hierarchy of collections and
files can be referenced using Logical Names (LN). Besides the Logical Names each file and
collection has a globally unique ID called GUID which comes from a flat namespace and can also
be used for referencing files or collections but for the end-user the human-readable path-like
Logical Names are much more suitable.

Components of the storage system
The ARC storage system will contain these components:
• the Hash, which is a distributed database capable of storing attribute-value pairs (a Mutable

Distributed Hash Table presumably using the Etna1 protocol)

Design of ARC storage sytem

2

1 Etna: a Fault-tolerant Algorithm for Atomic Mutable DHT Data; http://www.lcs.mit.edu/publications/
pubs/ps/MIT-LCS-TR-993.ps

H C

C

C

M
M

SM

SM

SM

SE

SE
SE

USER

The services of the ARC storage: the Hash, the Catalog, the
Maintainer, the Storage Manager and the Storage Element

http://www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TR-993.ps
http://www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TR-993.ps
http://www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TR-993.ps
http://www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TR-993.ps

• the Storage Catalog, which stores the metadata and hierarchy of collections and files using the
Hash as database.

• the Storage Maintainer, which handles the replication of files and monitors the health of the
Storage Elements (using the Hash as database)

• Storage Manager, which provides a high-level interface to the ARC storage
• Storage Element, which provides a unified interface for storing and retrieving files using

different back-ends including a native implementation of a simple file store and wrappers to
third-party solutions (e.g. FTP, GridFTP, dCache, etc.)

• client API, CLI and GUI clients

IDs used in the system
There are a number of IDs used in the ARC storage system, such as:
• Each service has a unique serviceID which can be used to get an endpoint reference from the

information system. We need an endpoint reference which is an address which we could connect
to.

• Each user should have a unique ID which we use e.g. when we specify the owner or the access
control list of a file or collection. This could be e.g. the Distinguish Name in an X.509 certificate.

• The Storage Elements in the system organize their files into stores which has a storeID. The
stores are useful if we want to use multiple backends in one Storage Manager instance. Within a
store a file is identified with a referenceID. A storeID, referenceID pair unambiguously selects a
file within a Storage Element.

• The location of a replica consists of three IDs: the ID of the Storage Element, the ID of the store
within the Storage Element, and the ID of the file within the store: (serviceID, storeID,
referenceID).

• Each file and collection has a globally unique ID called GUID.
• The files and collections are organized into a hierarchical namespace and can be referred to using

paths of this namespace called Logical Names (LN).

The Logical Name (LN)
The syntax of Logical Names (LN): [<GUID>]/[<path>]
Each file and collection has a GUID which is globally unique, so they can be unambiguously
referred using this GUID, that's why a single GUID is a Logical Name itself, but we put a slash on
the end of it to indicate that this is a Logical Name: '1234/'.
In a collection each entry has a name, and this entry can be a sub-collection, in which there are files
and sub-sub-collections, etc. Example: if we have a collection with GUID '1234', and there is a
collection called 'abc' in it, and in 'abc' there is another collection called 'def', and in 'def' there is a
file called 'ghi', then we can refer to this file as '/abc/def/ghi', if we know the GUID of the starting
collection, so let's prefix the path with it: '1234/abc/def/ghi'. This is the Logical Name of that file. If
there is a well-known system-wide root collection (its GUID could be e.g. '0'), then if a LN starts
with no GUID prefix, it is implicitly prefixed with the GUID of this well-known root collection,
e.g. '/what/ever' means '0/what/ever'.
If a client wants to find the file called '/what/ever', the client knows where to start the search, it
knows the GUID of the root collection. The root collection knows the GUID of 'what', and the
(sub-)collection 'what' knows the GUID of 'ever'. If the GUID of this file is '5678', and somebody
makes another entry in collection '/what' (= '0/what') with name 'else' and GUID '5678', then the '/
what/else' LN points to the same file as '/what/ever', so it's a hard link.
Each VO should create a VO-wide root collection, and put it in the generic root collection, e.g. if a
VO called 'vo1' creates a collection called 'vo1' as a sub-collection of the root collection (which has

Design of ARC storage sytem

3

the GUID '0'), then it can be referred as '0/vo1' or just '/vo1'. Then this VO can create some files,
and put them in this '/vo1' collection, e.g. '/vo1/file1', etc. Or sub-collections, e.g. '/vo1/col1', '/vo1/
col2/file3', etc. For this the VO does not need the install any service. These files and collections can
be created using a Storage Managers.

Storage Managers
Clients can access the storage system through a Storage Manager. If a client wants to create a
collection, upload or download a file, the first step is to connect a Storage Manager. The Storage
Manager then resolves Logical Names and gets metadata using the Catalog, initiates file transfers
on some storage elements, and gives some assertions (some kind of certificate) to the client, which
allows the client to actually do the file transfer from/to a storage element. So the data transfer itself
is not going through the Storage Manager, it is performed over a direct link between a storage
element and the client.

The Catalog
The Catalog is a distributed service capable of managing the hierarchy of files and collections,
storing all of their metadata. Each file and collection in the Catalog has a globally unique ID
(GUID). A collection contains files and other collections, and each of these entries has a name
unique within the catalog very much like entries in a usual directory on a local filesystem. Besides
files and collections the Catalog stores a third type of entries called Mount Points which creates the
capability to mount the namespace of third-party storage solutions to our global namespace and
make the files on a third-party storage available through the interface of the ARC storage system.
The Catalog uses the Hash as a distributed database.

Design of ARC storage sytem

4

Downloading a file from the ARC storage: (1) user initiates the downloading; (2)
Storage Manager wants to get the locations of the file replicas; (3) Catalog gets
data from the Hash; (4) Hash returns data; (5) Catalog returns replica locations;
(6) Storage Manager initiates transfer; (7) Storage Element returns TURL; (8)

Storage Manager returns TURL; (9) user downloads the file

USER

SM

C

H

(1)

(2)

(3)

(4)

(5)

(8)

SE

(6)

(7)
(9)

The Hash
The Hash is a distributed service capable of consistently storing objects containing attribute-value
pairs. It will be most likely based on a distributed hash table (DHT) algorithm called Chord with a
consistency solution called Etna on top of it. All metadata about files and collections are stored in
the Hash, and the Maintainer service uses the Hash for storing information about ongoing
replications and the health of the Storage Elements as well.

Storage Elements
When a new file is put into the system the number of needed replicas is given for the file. The file
replicas are stored on different Storage Elements.
The hierarchy of files on an ARC storage Element has nothing to do with the the hierarchy of
collections, or Logical Names. When a replica is stored on a Storage Element it gets an ID which
refers to it within that Storage Element. Each Storage Element has a unique ID itself, so with these
IDs the replica can be unambiguously referenced, this is called a Location. The namespace of these
Locations has nothing to do with the namespace of GUIDs or the namespace of Logical Names.

Maintainer services
These services are responsible for ensuring each file has at least as many valid replicas as needed.
The Storage Elements send heartbeats to the Maintainer services which keeps track of the list of
files on each Storage Elements so if one of them goes offline the Maintainer knows which files are
short of replicas and it can create more replicas.

Standards
The ARC storage internally does not use any storage related standards, but the components which
may be used separately could provide standard interfaces as well, e.g. the Storage Managers and
maybe the Storage Elements can provide an SRM interface or GridFTP.

Scenarios
The following scenarios currently deals with no authorization. It is very urgent to identify the steps
we need for a proper authorization.

Downloading a file
We want to download a file about which we know that it is somewhere in our home collection on
the storage: ‘/ourvo/users/we’. We can get a list of entries in this collection from any Storage
Manager.
• We want to find a Storage Manager. Maybe we have a cached list of recently used Managers or

we can get one from the information system.
• We have an endpoint reference of a Manager, we could call its list method (1) with the LN ‘/

ourvo/users/we’.
• The Manager has to find a Catalog service, again using its cache of recently used Catalog services

or get a new one from the information system.
• The Manager has an endpoint reference of a Catalog service, it could ask the Catalog to traverse

the LN ‘/ourvo/users/we’. (2)
• The Catalog needs a Hash service to access the catalog data, when it has the endpoint reference of

one Hash service, it could get the information about the root collection, which contains the GUID

Design of ARC storage sytem

5

of the ‘ourvo’ sub-collection. Then the Catalog gets the entries of this ‘ourvo’ collection, and in it
it can find the GUID of ‘users’, and in the entries of ‘users’ there is the GUID of ‘we’ (3,4), which
the Catalog returns to the Manager. (5)

• The Manager now has the GUID of the collection ‘/ourvo/users/we’, it connects the Catalog again
to get all information about it (2), the Catalog replies with all the metadata of the collection and
the list of its entries. (5)

• The Manager now has the names and GUIDs of all the entries in ‘/ourve/users/we’, but the list
method should return timestamps and sizes etc. about these entries, so the Manager ask the
Catalog again about all these GUIDs (2), the Catalog replies with the needed metadata about
them. (5)

• Now the Manager has all the information we need, which is returned to us. (8)
• So we get the list of our ‘/ourvo/users/we’ collection, and now we realize that the file we want has

the LN ‘/ourvo/users/we/thefilewewant’ and we know the GUID of it as well: e.g. ‘a4b2e/’. (Of
course we know the GUID of the ‘/ourvo/users/we’ collection too, which is e.g. ‘13245’ and using
this we could refer to our file as ‘13245/thefilewewant’ which means the entry called
‘thefilewewant’ in the collection with a GUID ‘13245’.)

• We connect a Storage Manager again (the same one or maybe another one) to get the file with any
of these LNs (1), the ‘a4b2e/’ is the fastest solution because the Manager need not to look up the
whole LN again in the Catalog, a well-written client API should use this. With the get request we
give the Manager a list of our preferred Storage Elements and a list of transfer protocols we are
able to use.

• The Manager contacts the Catalog to get the locations of replicas of this file (2), the Catalog
connects the Hash (3) to get the metadata of the file (4) and returns it to the Manager (5). The
Manager uses some decision algorithm and chooses one location, if the file has a replica on one of
our preferred Storage Elements it will most likely choose that location. In the chosen location
there is the ID of the Storage Element, and the storeID and referenceID of the file within. Using
the information system or its local cache it could get the endpoint reference of the Storage
Element.

• The Manager initiate a transfer by the Storage Element with our list of transfer protocols. (6)
Hopefully the Storage Element supports one of these, and can create a transfer URL (TURL) with
a protocol we can download. The Storage Element returns the TURL to the Manager (7), and the
Manager returns it to us along with the checksum of the file. (8)

• Now we have a TURL from which we can download it (9) and checks if it is OK using the
checksum.

Uploading a file
We have a file on our local disk we want to upload to a collection called ‘/ourvo/common/docs’.
• We contact a Storage Manager to put the file, we give the size and checksum of it, the transfer

protocols we want to use, how many replicas we want, which Storage Elements we prefer, who is
the owner of this file, who has what kind of rights, etc. And of course we give the Logical Name
we want to call the file, which in this case will be ‘/ourvo/common/docs/proposal.pdf’

• The Manager uses the Catalog to get the GUID of the LN ‘/ourvo/common/docs’ and check if the
name ‘proposal.pdf’ is available in this collection.

• Then creates a new file entry within the Catalog with all the information we gave. The Catalog
returns the GUID of this new entry.

• Then the Manager add the name ‘proposal.pdf’ and this GUID to the collection ‘/ourvo/common/
docs’ and from now on there will be a valid LN ‘/ourvo/common/docs/proposal.pdf’ which points

Design of ARC storage sytem

6

to a file which has no replica at all. If someone tried to download the file called ‘/ourvo/common/
docs/proposal.pdf’ now, would get an error message with ‘try again later’.

• The Manager asks the Maintainer to choose a Storage Element with considering our preference,
and from the information system it get some information about the chosen Storage Element
including its endpoint reference. Then the Manager initiates the putting of the file on the Storage
Element, the request includes the size and checksum of the file, the GUID, and the protocols we
are able to use.

• The Storage Element creates a transfer URL and a referenceID for this file and registers the GUID
of the file in its own database and reports to the Maintainer that there is a new replica with state
‘creating’. If someone tries to download this file now, still gets a ‘try again later’ error message.

• The Manager adds the referenceID along with the storeID and the serviceID of the Storage
Element to the Catalog into the file entry as a new location. This new location initially has a state
‘creating’. The Manager then returns the TURL of the file to the client.

• Then we can upload the file to this TURL.
• The Storage Element detects that the file is arrived and reports the change of state to ‘alive’ to the

Maintainer which alters the state of that replica of the file in the Catalog. At this point the file has
only one replica, and if it needs more, then the Maintainer start the replication process, chooses a
Storage Element, initiates the transfer and then asks the Storage Element with the existing replica
to copy that file to this newly chosen Storage Element.

• If we cannot upload the file to the given TURL for some reason, we should remove the file entry
from the collection, or we should initiate a ‘reput’ to get a new TURL without removing and
recreating the file.

Storage Elements and Maintainers
Each Storage Element registers itself to a Maintainer and periodically send heartbeats and report of
state changes of its files. Also it checks periodically all of it files if they do exist and has a proper
checksum.
• If a Storage Element finds out that a file is missing or has a bad checksum, it reports this to any

Maintainer using the GUID of the file.
• The Maintainer uses the GUID to find the file in the Catalog, and sets the state of its replica in

question to ‘invalid’, then if the file has not enough replicas, it starts the creation of more replicas.
• The Maintainer keeps track of all the registered Storage Elements, and knows when they sent a

heartbeat last time. If a Storage Element won’t send a heartbeat within a given time it is
considered offline. The Maintainer has a ‘Storage Elements to GUIDs’ mapping and using it all
the files can be found which has replica on this Storage Element, and the state of these replicas
could be set to ‘offline’, and all files which now has less replicas than needed will be inserted into
the queue of the Maintainer to create more replicas.

• If a Storage Element comes online again it is asked to report all the files it has, and if it claims
that the replicas are intact, all the states could be changed back to ‘valid’.

Removing a file

• If we want to remove a file, we should connect to a Storage Manager, and tell it what is the LN of
the file we want to remove.

• The Storage Manager removes the entry from the collection in which the file is. (TODO: what
about hard links? maybe reference counting is needed.)

• The Storage Manager then marks the file for deletion, and asks the Maintainer to remove it.
• The Maintainer starts to remove the replicas with asking each Storage Element to remove, then it

removes the Catalog entry itself.

Design of ARC storage sytem

7

• If a Storage Element is not reachable, then the next time it goes online and reports the files it has
the Maintainer could notify it to remove the unneeded replicas.

Using a third-party storage as flat store
We have an FTP server which we want to use as a Storage Element in ARC storage, but we do not
want the existing files on the FTP server to appear in the namespace of the ARC storage.
• We should install a Storage Element with the flat-FTP backend. It is not needed for it to be on the

same machine as the FTP server.
• We choose a directory on the FTP server where we want to store the files and then configure the

Storage Element to expose it as a flat store, e.g. with ID ‘0’. The Storage Element advertises itself
as having a flat store with storeID ‘0’.

• When the Maintainer chooses this store of this Storage Element to store a replica, a put request
arrives, the Storage Element generates a referenceID and asks the FTP server to create a
temporary directory with a temporary username and password and encapsulate these into a simple
URL (TURL).

• The Storage Element returns the TURL and the referenceID and monitors the temporary directory.
When a file arrives, the Storage Element asks the FTP server to move it to the permanent
directory, and removes the temporary user and the temporary directory. Later the referenceID
could be used to get this file.

• When a get request arrives the Storage Element asks the FTP to create a temporary link for this
file, and a temporary user who has only read rights to this temporary link. This forms the TURL.

• If the Storage Element could get the information from the FTP about this temporary file that it is
already downloaded once, then asks the server to remove this user and the link as well. If it could
not get this information from the FTP, then after a given timeout it will remove the file by all
means.

• Maybe we could create a more sophisticated way to ensure that the user won’t mess up the
internal structure of the FTP server during the direct transfers.

Using a third-party storage as a hierarchical store
We have an FTP server with files and directories on it which we want to share and mount into the
ARC storage.
• We need to install a Storage Element with the hierarchical FTP-backend and configure it with the

parameters of the FTP server and the directory on the FTP server we want to share (e.g. there is a
directory on the FTP server called ‘/bill’, and we want to share its contents). This defines a
hierarchical store on the Storage Element, e.g. with an ID, say ’42’.

• We create a mount point in the Catalog e.g. at ‘/ourvo/share/steve’, this will point to this Storage
Element with storeID ’42’.

• We connect a Storage Manager wishing download a file with LN ‘/ourvo/share/steve/jobs’.
• The Storage Manager finds out that ‘/ourvo/share/steve’ is a mount point which points to a

particular Storage Element, so it turns directly to the Storage Element specifying the storeID ’42’
and a referenceID which contains the remaining part of the Logical Name which is ‘/jobs’.

• The Storage Element receives a get request with storeID ’42’ and referenceID ‘/jobs’. The FTP
backend concatenate the configured ‘/bill’ path with this referenceID and gets a path ‘/bill/jobs’. It
creates the TURL which is a URL with FTP protocol pointing to the file ‘/bill/jobs’. It may asks
the FTP server to create a temporary user with read rights only to this file, and later remove it, or
use some other method which prohibits the misuse of this TURL.

• If we want to upload a file to ‘/ourvo/share/steve/gates’ we ask the Manager to do so. The
Manager checks the Catalog and gets the information about the mount point, so it turns directly to

Design of ARC storage sytem

8

the Storage Element with the storeID to initiate the put transfer. But in this case along with the
storeID there is a referenceID as well with the remaining part of the LN: ‘/gates’.

• The Storage Element receives the put request with storeID ’42’ and referenceID ‘/gates’. This is a
hierarchical store so the referenceID is not ignored as it would be by a flat store. The FTP
backend concatenates the configured ‘/bill’ with the referenceID ‘/gates’, then it gets the path of
the new file, and asks the FTP server to create a temporary directory and a temporary user who
has write access only to this temporary directory. It creates a TURL containing the temporary user
and the temporary directory, and returns it.

• The Storage Element monitors the file and if it arrived, the Storage Element asks the FTP server
to move it to ‘/bill/gates’.

Hash
Functionality
The Hash is a distributed service capable of storing objects containing attribute-value pairs in a
scalable manner. Each object has an ID from a fixed width binary space, and contains any number
of attribute-value pairs, where attribute and value are arbitrary strings. If there are multiple
occurrences of an attribute then it could be considered that a list of values belongs to that attribute.
There could be any number of Hash services in the system and it does not matter which one a client
connect to, the answer will be the same. If you have an ID, you can get all attribute-value pairs of
the corresponding object with the get method. You can add or remove an attribute-value pair in an
object, or delete all occurrences of an attribute with the change method, and you can request
conditional changes, when the change only would be applied if the given conditions are met with
the changeIf method.

Data model

• ID is a fixed width binary number
• object is a a list of attribute-value pairs, where attributes and values are strings, and there could be

multiple occurrences of attributes

Interface

• get(list of IDs): returns list of (ID, object) pairs.
For each ID it returns the object (which is a list of attribute-value pairs) referenced by that ID.

• change(list of changes): returns a list of which changes were successful and which were not.
a change is: (changeID, ID, attribute, AVChangeType, value), where changeID is an arbitrary
ID which is used on return to identify which change was successful; ID points to the object
we want to change; AVChangeType can be ‘add’ (add a new attribute-value pair),
‘remove’ (remove the attribute-value pair), ‘delete’ (remove all occurrences of an attribute, no
value needed for this change)
Try to apply changes to objects, creates object if a non-existent ID is given.

• changeIf(list of conditional changes): list of which changes was successful and which was not.
a conditional change is a (changeID, ID, list of conditions, attribute, AVChangeType, value)
a condition is an (attribute, conditionType, value), where conditionType can be ‘has’ (there is
such an attribute-value pair), ‘not’ (there is no such attribute-value pair), ‘exists’ (there is at
least one occurrence of this attribute, the value does not matter), ‘empty’ (there are not any
occurrences of attribute, the value does not matter)
For each conditional change if all conditions are met, try to apply the change.

Design of ARC storage sytem

9

Security-related questions

• Who has right to modify object in the Hash? Among the storage services the Catalog and the
Maintainer use the Hash as their database, should we hardwire into all of the Hash services to
accept only a special kind of certificates which we could be sure only Catalogs and Maintainers
has?

• Should the objects have an owner and access control list?

Catalog
Functionality
The Catalog manages a tree-hierarchy of files, grouping them into collections. There is a root
collection with a well-known GUID which can be used as starting point when resolving Logical
Names. If you create a new collection with the method newCollection, the Catalog generates a new
GUID, but does not insert it into the tree-hierarchy which can be done by adding this GUID as a
new entry to one of the existing collection with the changeEntries method, that makes the existing
collection the parent of the new collection. A collection can be closed with closeCollection, this
cannot be undone and prevents files to be added or removed from this collection. A new file can be
created with the newFile method which returns the newly generated GUID of the new file entry
which should be added to a parent collection to insert it into the global namespace. A file has a list
of locations where its replicas are stored, this list can be manipulated with changeLocations, the
number of needed replicas can be altered with changeNeededReplicas. A mount point can be
created with the method newMountPoint, and the target of an existing mount point can be changed
with changeTarget. Each Catalog entry can have arbitrary metadata which can be altered with
changeMetadata. The owner and the access control list (ACL) of an entry can be changed with the
changeOwner and changeACL methods. The remove method deletes an entry from the Catalog. The
traverseLN method try to traverse Logical Names walking the hierarchy of the namespace and to
return the GUID of the entry pointed by the LN. After you have a GUID of file, collection or mount
point, you can get all the information using the get method of the Catalog.

Data model
Each catalog entry has a unique ID called GUID.
• A Collection is a list of Files and other Collections, which are in parent-children relationships

forming a tree-hierarchy. Each entry has a name which is only valid within this Collection, and it
is unique within the Collection. Each entry is referenced by its GUID. So a Collection is a list of
name-GUID pairs, plus there are also some well-defined metadata associated with the Collection
in the form of attribute-value pairs such as:

• created: timestamp of creation
• modified: timestamp of last modification
• owner: ID of owner
• mutable: if the collection is closed, then it is not mutable anymore
• access control list: a list of (ID, right), where ID could be an ID of a user, a VO or some

special semantic, e.g. ‘everybody’; right could be ‘list’ (to list the contents of the collection),
‘delete’ (to remove an entry from the collection), ‘add’ (to add an entry to the collection),
‘modify’ (to change metadata, owner or close the collection)

• ... any other arbitrary metadata
• A File: a File entry contains a couple of attributes such as:

• size: the file size in bytes

Design of ARC storage sytem

10

• checksum: checksum of the file
• created: timestamp of creation
• modified: timestamp of last modification (metadata, ACL, owner, etc.)
• owner: ID of owner
• access control list: list of (ID, right), where right could be ‘read’ (to download the file or any

part of it), ‘write’ (to reset the file with a new replica), ‘delete’ (to delete all replicas of the
file)

• number of needed replicas: how many valid replicas should this file have
• state of the file, which could be ‘normal’ and ‘deleted’
• list of locations of the replicas: a location is a (serviceID, storeID, referenceID, state) tuple

where serviceID is the ID of the Storage Element service storing this replica, storeID is the ID
of the store within the Storage Element, referenceID is the ID of the file within that store, and
state could be ‘valid’ (if the replica passed the checksum test, and the storage element storing
it is healthy), ‘invalid’ (if the replica has wrong checksum, or the storage element claims it
has no such file), ‘offline’ (if the storage element is not reachable, but may has a valid
replica), ‘creating’ (if the replica is in the state of uploading), ‘sentenced’ (if the replica is
marked for deletion)

• any other arbitrary metadata including list of preferred Storage Elements (the IDs of Storage
Elements to use for storing replicas)

• A Mount Point: there is one more type of Catalog entries called Mount Point which is a reference
to a Storage Element which handles a subtree of the namespace. Its attributes:

• target: a pair of (serviceID, storeID) where serviceID is the ID of the Storage Element;
storeID is an ID to identify the store within the Storage Element

• created: timestamp of creation
• owner
• access control list: list of (ID, right), where right could be the same as of the Collection
• any other arbitrary metadata

Interface

• newCollection(newCollectionRequestList): returns a list of (requestID, GUID)
newCollectionRequestList is a list of (requestID, entrylist, mutable, owner, acl, metadata)
where requestID is an arbitrary ID used to identify this request in the list of responses;
entrylist is a list of (name, GUID) pairs, which are the actual content of this collection, empty
by default;
mutable is true by default, if it is false, then no more files can be added besides the initial
entrylist;
owner is the ID of the owner of this collection;
acl is a list of (ID, right) pairs where ID is the ID of the user;
metadata is a list of any arbitrary attribute-value pairs.
This method generates a GUID for each request, and inserts the new collection entry into the
Hash, then returns the GUIDs of the newly created collections.

• changeEntries(entryChanges): returns a list of (changeID, success)
entryChanges is a list of (changeID, collectionGUID, entryChangeType, name, GUID) where
entryChangeType is ‘add’ or ‘remove’.
For each change try to apply it to the entries of the collection referenced by collectionGUID.

• closeCollection(list of GUIDs): returns list(GUID, status)
Try to close each given collections.

• changeOwner(ownerChanges): returns a list of (changeID, success)

Design of ARC storage sytem

11

ownerChanges is a list of (changeID, GUID, owner) where owner is the ID of the new owner
• changeACL(ACLChanges): returns (changeID, success)

ACLChanges is a list of (changeID, GUID, ID, ACLChangeType, right) where
ACLChangeType can be ‘add’ or ‘remove’ and right can be one of the valid rights of both the
collection and the file, but of course only file-rights could be applied to a file and only
collection-rights could be applied to a collection

• changeMetadata(metadataChanges): returns (changeID, success)
metadataChanges is a list of (changeID, GUID, attribute, AVChangeType, value) where
AVChangeType can be ‘add’ (add a new attribute-value pair), ‘remove’ (remove the attribute-
value pair), ‘delete’ (remove all occurrences of attribute, no value needed for this change)

• newFile(newFileRequestList): returns a list of (requestID, GUID)
newFileRequestList is a list of (requestID, size, checksum, locations, neededReplicas, owner,
acl, metadata) where requestID is used for the response;
size is the size of the file;
checksum is some kind of checksum of the file;
locations is a list of (serviceID, storeID, referenceID, state) and is empty by default;
neededReplicas is an integer specifying the number of needed replicas of this file;
owner is the ID of the owner;
acl is a list of (ID, right) pairs where ID is the ID of the user;
metadata is a list of any arbitrary attribute-value pairs (may include ‘preferredSE’ attributes)
This method creates a new file entry in the Hash after generating a new GUID for it.

• changeNeededReplicas(replicaChanges): returns a list of (changeID, success)
replicaChanges is a list of (changeID, GUID, neededReplicas) which gives for each GUID
the new number of needed replicas.

• changeLocations(locationChanges): returns a list of (changeID, success)
locationChanges is a list of (changeID, GUID, locationChangeType, serviceID, storeID,
referenceID, state) where locationChangeType can be ‘add’ (to add a new location: serviceID,
storeID, referenceID and state), ‘remove’ (to remove a location if all four attributes match)

• get(list of GUIDs): returns getResponseList
getResponseList is a list of (GUID, type, created, modified, owner, acl, metadata, size,
checksum, locations, neededReplicas, entrylist, mutable, target) where type is ‘collection’,
‘file’ or ‘mountpoint’ and the attributes are filled accordingly.

• remove(list of GUIDs): returns a list of (GUID, success) where success shows if the removing
was successful or not

• traverseLN(traverseRequestList): returns traverseResponseList
traverseRequestList is a list of (requestID, LN) with the Logical Name to be traversed
traverseResponseList is a list of (requestID, traversedList, wasComplete, traversedLN, GUID,
type, restLN) where:
traversedList is a list of (LNpart, GUID) pairs, where LNpart is a part of the LN, GUID is the
GUID of the Catalog-entry referenced by that part of the LN, the first element of this list is
the shortest prefix of the LN, the last element is the LN without its last part;
wasComplete indicates if the full LN could be traversed;
traversedLN is the part of the LN which was traversed, if wasComplete is true, this should be
the full LN;
GUID is the GUID of the traversedLN;
type is the type of traversedLN which can be ‘collection’, ‘file’ or ‘mountpoint’;
restLN is the postfix of the LN which was not traversed for some reason, if wasComplete is
true, this should be an empty string.

Design of ARC storage sytem

12

• newMountPoint(newMountRequestList): returns a list of (requestID, GUID)
newMountRequestList is a list of (requestID, target, owner, acl, metadata) where target is a
pair of (serviceID, storeID) where serviceID is the address of the Storage Element service
handling this mount and storeID is an ID of the store within the Storage Element.
After you create a mountpoint-entry with this method, you should add it to a collection to
mount it to the global namespace.

• changeTarget(targetChanges): returns a list of (changeID, success)
targetChanges is a list of (changeID, GUID, target) where GUID is the GUID of the Mount
Point whose target is to be changed, target is a pair of (serviceID, storeID).

Security related questions

• How has right to modify the Catalog? The Catalog stores all of its data in the Hash, so the Catalog
should have right to modify data in the Hash. The Catalog is used by the Storage Managers, so all
Storage Managers have to have full control of the Catalog data.

• Each entry has an owner and ACL, should the Catalog only store these information or somehow
act upon them? If it only stores the information then it is up to the Storage Manager not to allow
someone the change e.g. an entry in a collection who has got no proper rights. If the Catalog acts
upon these rights, then an entry can only be modified by its owner and the ones who has proper
rights in the ACL of the entry, but in this case because a change is always made by a Storage
Manager, this Storage Manager has to act on behalf of the user. How can this be accomplished?

Storage Elements
Functionality
A Storage Element is capable of storing files, it keeps track all the files it stores with their GUIDs
and checksums. The Storage Elements register themselves by a number of Storage Maintainer
services, and periodically send heartbeat to them. The Storage Element periodically checks each file
to detect corruption. If a file goes missing or has a bad checksum the Storage Element notify the
Maintainer services about the error referring the file with its GUID.
The Storage Element organize its files into stores and within a store a file could be identified with a
referenceID which is unique within the store. The Storage Elements advertise itself with giving the
IDs of their stores. There are two kinds of stores: hierarchical and flat. A flat store uses referenceID
from a flat namespace (e.g. UUIDs such as ‘31F831E2-CA38-4950-91DF-A89C6C40868D’), and
usually you cannot specify the referenceID upon uploading, the Storage Element generates it itself.
There will be a native flat store implementation within the Storage Element.
A hierarchical store uses a hierarchical filesystem-like namespace in the referenceIDs, and you
should specify this upon uploading. There will be backends in the Storage Element for several
third-party storage systems such as plain FTP, GridFTP, dCache, etc. If e.g. a plain FTP is wrapped
by a Storage Element it could use a hierarchical store to expose it, using FTP paths as referenceIDs.
If we know the Location of a file, which is the ID of the Storage Element service, the ID of the store
within the Storage Element, and the referenceID, we could from some information system get the
endpoint reference of the Storage Element, then we should call its get method with the storeID and
referenceID and a list of transfer protocols we are able to handle (e.g. ‘HTTP’, ‘FTP’), the Storage
Element chooses a protocol from this list which it can provide, and create a transfer URL (TURL)
and returns it along with the checksum of the file. We could download the file from this TURL, and
verify it with the checksum.

Design of ARC storage sytem

13

Storing a file starts with initiating the transfer with the put method of the Storage Element, we
should give which store we want use, (in case of hierarchical store the referenceID is needed), the
size and checksum of the file and its GUID as well. We should provide owner and ACL information
too, but see security related questions about this service. We also specify a list of transfer protocols
we are able to use, and the Storage Element chooses a protocol, creates a TURL for uploading and
in case of a flat store generates a referenceID, than we can upload the file to the TURL.
These TURLs are one-time URLs which means that after the client uploads or downloads the file
these TURLs cannot be used again to acces the file. If we want to download the same file twice, we
have to initiate the transfer twice, and will get two different TURLs.
In normal operation the put and get calls is made by a Storage Manager but the actual uploading
and downloading is done by the user’s client. In case of replication the Storage Manager initiate the
putting of the new replica on a Storage Element and receives a TURL, then the Storage Manager
asks a Storage Element holding one of the old replicas to upload that replica to the given TURL
with the copy method. With getState we can get the state of a replica (‘creating’, ‘alive’ or
‘invalid’). The delete method removes a file.

Data model
A file in a storage element is referenced by a storeID and a referenceID. Each file has a state which
could be ‘creating’ when it is just being uploaded, ‘alive’ if it is alive or ‘invalid’ if it does not
exists anymore or has a bad checksum.
It is up to the Storage Element how to organize its stores internally, but there are some scenarios.
• The Storage Element uses only one store, e.g. with ID ‘0’, and advertising itself only with this

store. At the beginning it is empty, and if a put request arrives with storeID = 0, the Storage
Element generates a new referenceID for the new file, which is later can be retrieved with this
storeID and referenceID.

• The Storage Element has an internal namespace with files already in it, there is a file with path
e.g. ‘/dir/file’. The Storage Element exposes this with some storeID, e.g. ‘1’, and uses the
referenceID as path. If a get request arrives with storeID = 1, and referenceID = ‘/dir/file’ then the
Storage Element provides this file for downloading. If there is a put request for this store, then a
referenceID has to be given, e.g. ‘/dir/file2’. This kind of store should be mounted to the global
namespace with a newMountPoint call of a Storage Manager.

• A Storage Element can provide both kind of stores, even multiple of each. There could be e.g. two
separate namespace-based stores with ID ‘1000’ and ‘2000’, and one flat store with ID ‘3000’.

Interface

• get(getRequestList): returns list of (requestID, TURL, protocol, checksum)
getRequestList is a list of (requestID, storeID, referenceID, protocols) where requestID is an
arbitrary ID used in the reply; storeID and referenceID refers to the replica to get, protocols is
a list of protocols the client able to use. The TURL in the response is a URL called Transfer
URL which can be used by the client to download the file; the TURL usually contains the
protocol, but just in case the chosen protocol is also returned along with the checksum of the
replica.

• put(putRequestList): returns a list of (requestID, TURL, protocol, referenceID)
putRequestList is a list of (requestID, GUID, checksum, size, storeID, referenceID, owner,
acl, protocols) where requestID is a ID used for response, GUID and checksum is the GUID
and checksum of the file, this is needed for a better self-healing, size is the size of the file in
byte, storeID is the store we want to put the file into, referenceID is a proposed ID for the
replica, the Storage Element is allowed the ignore it and generate a different ID, owner is the

Design of ARC storage sytem

14

ID of the owner of this file, acl is a list of (ID, right), where ID is the ID of the user, and right
could be ‘read’, ‘write’ and ‘delete’.

• delete(deleteRequestList): returns a list of (requestID, status)
deleteRequestList is a list of (requestID, storeID, referenceID) selecting the files to remove.
The status could be ‘deleted’ or ‘nosuchfile’.

• copy(copyRequestList): returns a list of (requestID, status)
copyRequestList is a list of (requestID, storeID, referenceID, TURL, protocol) where storeID
and referenceID select the file which should be uploaded to TURL which is a URL with the
given protocol.

• getState(stateRequestList): returns a list of (requestID, state)
stateRequestList is a list of (requestID, storeID, referenceID) where storeID and referenceID
points to the file whose state we want to get. The state in the response could be ‘creating’,
‘alive’ or ‘invalid’.

Security related questions

• Should the Storage Element store owner and ACL information for each replica? Is this exactly the
same as in the Catalog? Or each replica of a file could have different owner and ACL on different
Storage Elements? If the Storage Element stores no owner and ACL information how can it
authorize a client who want to download or upload a file?

• When a user wants to download a file, connect a Storage Manager. The Storage Manager can
decide based upon information from the catalog if this user has read rights to this file or not. If the
user has proper rights, the Storage Manager chooses a Storage Element and initiate a get request.
In this case the Storage Manager acts on its own behalf when communicating with the Storage
Element or acts in behalf of the user? Who creates the security assertion? If the Storage Manager
creates some kind of assertion which authorize the user to download the file from the given
Storage Element, then the Storage Element should accept this assertion. Or should the Storage
Element create this assertion using its on owner and ACL information or just getting the ID of the
user from the Storage Manager?

• When we want to copy a replica from one Storage Element to an other one, we initiate the put
request on the target Storage Element. Should we initiate it on behalf of the source Storage
Element? Then we call the copy method of the source Storage Element. Is there a need for an
assertion between Storage Elements? Who can the target Storage Element authorize the source
Storage Element?

• If the Storage Element wraps a third-party storage how can we map the owners and ACLs of the
third-party storage and the ARC storage? How can we create assertions acceptable by the third-
party storage? How can we create one-time TURLs with third-party storages which ensures that
after the client downloads or uploads the requested file no one can use that TURL again to access
that file?

Maintainer
Functionality
The Maintainer has two main functionality, the first is to receive heartbeat messages with list of
invalid replicas from registered Storage Elements, the second is to manage the creation and deletion
of replicas and making decisions about which Storage Element to choose for storing a file. The
Maintainer services store all data in the Hash so it does not matter by which Maintainer service a
Storage Element registered itself and to which Maintainer service the heartbeat messages are sent

Design of ARC storage sytem

15

to, all Maintainer services access the same database. If a Storage Element reports that one of its file
is corrupted, then the Maintainer change the state of that particular replica to invalid and insert the
file into the waiting queue to create a new replica of it. If a Storage Element stops sending
heartbeats the Maintainer check the Hash for the Storage Element to GUID mappings and set the
state of all replicas in the Catalog to offline, and put all the affected files to the waiting queue.
When a file has not enough replica or has a replica marked for deletion the Maintainer service can
handle the replication and deletion if we call the assist method with the GUID of the file.
The register method should be used for registering a new Storage Element, and then periodically
the report method should be called to indicate that the Storage Element is still alive and to report on
the invalid replicas. The choose method is called by the Storage Manager to choose an appropriate
Storage Element to store a replica.

Data model
The Maintainer keeps track of the registered Storage Elements. It stores (using the Hash as
database) attributes such as:
• serviceID: the ID of the Storage Element
• lastHeartBeat: the timestamp of the last heartbeat sent by the Storage Element
• list of (GUID, storeID, referenceID) for each replica stored on this Storage Element: this list is

maintained by the Catalog when a new file is created or locations change.
The Maintainer also maintains a waiting queue of files with something to do:
• GUID: the GUID of the file
• actionList: a list of (timestamp, action, location, maintainerID), where timestamp is the time of

the action, action can be ‘replicating’ or ‘deleting’, location is a (serviceID, storeID, referenceID)
refers to a replica of the file and maintainerID is the ID of the Maintainer creating this action-
entry.

Interface

• register(serviceID, filelist): returns number of seconds, which is the time within the Maintainer
expects the first heartbeat

filelist is a list of (GUID, storeID, referenceID) including all the files the Storage Element
already has

• report(serviceID, changedFiles): returns number of seconds
changedFiles is a list of (GUID, storeID, referenceID, state) indicating files with changed
state or which are new, where state could be ‘invalid’ (e.g. the periodic self-check of the
Storage Element found a non-matching checksum or missing file), ‘creating’ (if this is a new
file just being uploaded) or ‘alive’ (if the new file was uploaded and now become alive).

• assist(list of GUIDs)
add files to the Maintainer which it has to do something with (create or remove replicas)

• choose(chooseRequestList): returns a list of (requestID, serviceID, storeID)
chooseRequestList is a list of (requestID, metadata) where metadata may contain information
about the preferred Storage Elements and any other data which can be used to make the
decision. The serviceID is the ID of the chosen Storage Element and the storeID is the ID of
the chosen store within the Storage Element

Security related questions

• The Maintainer has to write the Hash, has to use the Catalog for modifying replica states and
adding new replicas for any file, it has to call copy methods of any Storage Element to create new

Design of ARC storage sytem

16

replicas. How could all these services authorize a Maintainer service? When creating a new
replica should the Maintainer acts behalf of the owner of a file? The replication is not initiated by
any user, is this affects the creation of the assertion?

Manager
Functionality
The Storage Manager provide an easy to use interface of the ARC storage to the users. You can put,
get and delete files using their Logical Names with putFile, getFile and delFile methods, create,
close, remove and list collections with makeCollection, closeCollection, unmakeCollection and list.
The owner, the ACL and all the metadata of a file or collection can be changed with modifyOwner,
modifyACL and modifyMetadata. The number of the needed replicas of a file can be changed with
modifyNeededReplicas, a stat gives all the information about a file or collection, and you can move
collections and files with move, copy files with copy, and search for matching path names with
glob.

Data model
The Storage Manager interface uses mostly Logical Names (LNs), which have the syntax of:
‘<GUID>/<path>’ where both sides can be omitted, e.g. ‘afg342/foo’ is an entry called ‘foo’ in the
collection with GUID ‘afg342’; ‘f36a7481/’ refers to the a file or collection with GUID
‘f36a7481’; ‘/vo/dir/stg’ points to the entry which is reachable from the root collection using the
given path; and ‘/’ simply refers to the root collection.

Interface

• putFile(putFileRequestList): returns a list of (requestID, TURL, protocol)
putFileRequestList is a list of (requestID, LN, size, checksum, protocols, neededReplicas,
preferredSEs, owner, acl, metadata, reput), where requestID is an arbitrary ID used in the
response; LN is the wanted Logical Name of the new file, size is the size of the file in bytes,
checksum is some kind of checksum of the file (should be self-describing to know what kind
of checksum it is), protocols is a list of protocols we want to use for uploading,
neededReplicas is the number of how many replicas of this file we want, preferredSEs is a list
of the IDs of the Storage Elements we want to use, owner is the ID of the owner of this file,
acl is a list of (ID, right) where ID is the ID of the user and right can be ‘read’, ‘write’ or
‘delete’, metadata is a list of arbitrary attribute-value pairs we want to store, reput is a
boolean indicating if it is a reput of an existing file. A reput removes all the existing replicas
of the file and initiates a new upload, but preserves the GUID, so from the Catalog point of
view it remains the same file. The returned TURL is a URL with a chosen protocol to upload
the file itself.

• getFile(getFileRequestList): returns a list of (requestID, TURL, protocol)
getFileRequestList is a list of (requestID, LN, protocols, preferredSEs) where requestID is
used in the response, LN is the Logical Name referring to the file we want to get, protocols is
a list of transfer protocols the client supports, preferredSEs is a list of IDs of the preferred
Storage Elements, so if the file has a replica on one of our preferred Storage Element we get a
TURL to that one. TURL is the transfer URL using which we can download the file.

• delFile(delFileRequestList): returns a list of (requestID, status)
delRequestList is a list of (requestID, LN) with the Logical Name of the file we want to
delete. The status in response could be ‘deleted’, ‘nosuchLN’, ‘denied’.

Design of ARC storage sytem

17

• stat(statRequestList): returns a statResponseList
the statRequestList is a list of (requestID, LN) with the Logical Name of the file or collection
we want to get information about
the statResponseList is a list of (requestID, type, owner, acl, metadata, size, checksum,
entrylist, mutable) where type is ‘collection’ or ‘file’ and the other attributes are filled
accordingly.

• modifyOwner(ownerRequestList): returns a list of (requestID, status)
ownerRequestList is a list of (requestID, LN, owner) where LN is the Logical Name of the file
or collection, and owner is the ID of the new owner. The status in the response could be
‘modified’ or ‘denied’ or ‘nosuchLN’.

• modifyACL(ACLRequestList): returns a list of (requestID, status)
ACLRequestList is a list of (requestID, LN, ID, ACLChangeType, right) where LN is the
Logical Name of the file or collection, ID is the ID of the user whose rights we want to
modify, ACLChangeType could be ‘add’ or ‘remove’, and right could be one of the rights of
collection or file, but of course only the appropriate rights could be applied.
The status in the response could be ‘done’, ‘denied’, ‘invalid’ (if that right is not applicable),
‘nosuchLN’.

• modifyMetadata(metadataRequestList): returns a list of (requestID, status)
metadataRequestList is a list of (requestID, LN, attribute, AVChangeType, value) where
AVChangeType can be ‘add’ (add a new attribute-value pair), ‘remove’ (remove the attribute-
value
pair), ‘delete’ (remove all occurrences of attribute, no value needed for this change).
The status in the response could be ‘done’, ‘denied’, ‘nosuchentry’ (if a remove cannot find a
metadata with the given attribute and value, or if a delete cannot find an entry with the given
attribute) or ‘nosuchLN’.

• modifyNeededReplicas(replicaRequestList): returns a list of (requestID, status)
replicaRequestList is a list of (requestID, LN, neededReplicas) which gives for each file
referred by a Logical Name the new number of needed replicas. The status could be
‘changed’, ‘denied’, ‘nosuchLN’.

• makeCollection(makeCollectionRequestList): returns a list of (requestID, status)
makeCollectionRequestList is a list of (requestID, entrylist, mutable, owner, acl, metadata)
where entrylist is the list of (name, LN) pairs, which is the initial content of this collection
(the entries in the new collection will be hardlinks to the given Logical Names with the given
name) ; if mutable is false then no more files can be added later: the collection is closed;
owner is the ID of the owner of this collection, acl is a list of (ID, right) pairs, where ID is the
ID of a user and right could be ‘list’, ‘delete’, ‘add’, ‘modify’ (see the data model of the
Catalog).
The status of response is ‘made’ or ‘denied’ or ‘nosuchLN’ (if the parent collection does not
exist)

• closeCollection(closeRequestList): returns a list of (requestID, status)
closeRequestList is a list of (requestID, LN) listing the Logical Names of the collections we
want to close. The status in the response can be ‘closed’, ‘denied’, ‘nosuchLN’.

• unmakeCollection(unmakeRequestList): returns a list of (requestID, status)
unmakeRequestList is a list of (requestID, LN) with all the Logical Names of the collections
we want to remove. The status could be ‘unmade’ or ‘denied’ or ‘nosuchLN’.

• list(listRequestList): returns listResponseList

Design of ARC storage sytem

18

listRequestList is a list of (requestID, LN, neededMetadata) where LN is the Logical Name of
the collection (or file) we want to list, neededMetadata is a list of attributes, only metadata
with these attributes will be returned.
listResponseList is a list of (requestID, name, type, created, modified, owner, size,
validReplicas, mutable, metadata) where name is the name of the entry within the collection,
type is ‘collection’, ‘file’ or ‘mountpoint’, created and modified are timestamps, owner is the
ID of the owner, size is the size of a file (a collection has no size), validReplicas is the number
of valid replicas of a file, mutable indicates whether the collection is closed or not (a file has
no mutable flag), metadata is a list of (attribute, value) pairs.

• move(moveRequestList): returns a list of (requestID, status, statusdetail)
moveRequestList is a list of (requestID, sourceLN, targetLN, preserveOriginal) where
sourceLN is the Logical Name referring to the file or collection we want to move (or just
rename) and targetLN is the new path, and if preserveOriginal is true the sourceLN would not
be removed, so with preserveOriginal we actually creating a hard link. The status is to be
‘moved’, ‘denied’ or ‘nosuchLN’ and statusdetail could be ‘source’ or ‘target’ depending
which part of the moving was denied or missing.

• copy(copyRequestList): returns a list of (requestID, status)
copyRequestList is a list of (requestID, sourceLN, targetLN, preferredSEs, neededReplicas)
where sourceLN is the path of the file we want to duplicate, the targetLN is the new path,
preferredSEs is a list of the IDs of the Storage Elements we prefer to put the replicas on,
neededReplicas is the number of needed replicas for the new file.

• glob(globRequestList): returns a list of (requestID, LNs)
globRequestList is a list of (requestID, pattern) where pattern is a usual pattern used for paths.
For each request a list of LNs is returned with all the LNs matched the pattern.

Security related questions

• How can the Storage Manager create an assertion which authorizes the user to upload or
download something from a Storage Element?

• How can we authorize the Storage Manager to get full access of all the data in the Catalog?

Design of ARC storage sytem

19

